НЕКОММЕРЧЕСКОЕ ПАРТНЕРСТВО САМОРЕГУЛИРУЕМАЯ ОРГАНИЗАЦИЯ «ГЛАВВЕРХНЕВОЛЖСКСТРОЙ»

СТАНДАРТ СТО ОРГАНИЗАЦИИ 04696843-004-2015

ИЗДЕЛИЯ ТЕПЛОИЗОЛЯЦИОННЫЕ ИЗ ВСПЕНЕННОГО ПОЛИЭТИЛЕНА «ТИЛИТ $^{\circ}$ », «ПЕНОФОЛ $^{\circ}$ » В КОНСТРУКЦИЯХ ТЕПЛОВОЙ ИЗОЛЯЦИИ ОБОРУДОВАНИЯ И ТРУБОПРОВОДОВ

Руководство по применению, расчет и монтаж

Heat insulating products made of polyethylene foam "TILIT®", "PENOFOL®" in the design of heat insulation of equipment and pipelines

Guidance on the use, design and installation

издание официальное

Ярославль 2015

Предисловие

Настоящий стандарт организации разработан в соответствии с целями и принципами стандартизации в Российской Федерации, установленными Федеральным законом от 27 декабря 2002 г. № 184-ФЗ «О техническом регулировании». Правила применения национальных стандартов Российской Федерации установлены в ГОСТ Р 1.0-2004 «Стандартизация в Российской Федерации. Основные положения» и ГОСТ Р 1.4-2004 «Стандартизация в Российской Федерации. Стандарты организаций. Общие положения»

Сведения о стандарте

- 1 РАЗРАБОТАН ЗАО «Завод ЛИТ», НП СРО «ГЛАВВЕРХНЕВОЛЖСКСТРОЙ».
- 2 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ 26 ноября 2015 года общим собранием членов НП СРО "ГЛАВВЕРХНЕВОЛЖСКСТРОЙ"
- 3 ВВЕДЕН ВПЕРВЫЕ

Содержание

Введение

- 1 Область применения
- 2 Нормативные ссылки
- 3 Термины и определения
- 4 Общие положения
- 5 Требования к теплоизоляционным конструкциям для оборудования и трубопроводов с применением изделий «Тилит», «Пенофол»
- 5.1 Общие положения
- 5.2 Теплоизоляционные конструкции для оборудования и трубопроводов тепловых сетей систем отопления, горячего и холодного водоснабжения, технологических систем
- 5.3 Теплоизоляционные конструкции для оборудования, трубопроводов и воздуховодов систем вентиляции и кондиционирования воздуха
- 6 Требования к теплоизоляционным пенополиэтиленовым изделиям «Тилит», «Пенофол».
- 7 Требования к покровным материалам и изделиям
- 7.1 Гибкий покровный материал «Армофол ТК», ТУ 1811-081-04696843-2005
- 7.2 Гибкий покровный материал «ТИТАНФЛЕС», ТУ 2245-095-04696843-2012 с изм. №1, 2 СТО 04696843-001-2015 Технические условия
- 7.3 Чехлы энергосберегающие «Тилит» ТУ 2291-093-04696843-2010
- 8 Требования к аксессуарам для монтажа «Тилит», «Пенофол»
- 8.1 Клей «Тилит»
- 8.2 Лента армированная самоклеящаяся «Тилит»
- 8.3 Лента алюминиевая самоклеящаяся «ЛАС»
- 8.4 Лента алюминиевая самоклеящаяся армированная «ЛАС-А»
- 8.5 Лента алюминиевая самоклеящаяся прочная «ЛАС-П»
- 8.6 Лента самоклеящаяся «Тилит Супер СК», «Тилит Блэк Стар СК»
- 8.7 Заклепки металлические
- 8.8 Зажимы «Тилит»
- 9 Проектирование тепловой изоляции с применением изделий «Тилит», «Пенофол»
- 9.1. Определение толщины теплоизоляционного слоя изделий «Тилит», «Пенофол» по нормированной плотности теплового потока
- 9.2. Определение толщины изоляции «Тилит», «Пенофол» по заданной величине теплового потока
- 9.3. Определение толщины тепловой изоляции «Тилит», «Пенофол» по заданной величине охлаждения (нагревания) вещества, сохраняемого
- в емкостях в течение определенного времени
- 9.4. Определение толщины тепловой изоляции «Тилит», «Пенофол» по заданному снижению (повышению) температуры вещества, транспортируемого трубопроводами (паропроводами)
- 9.5. Определение толщины тепловой изоляции «Тилит», «Пенофол» по заданному количеству конденсата в паропроводах
- 9.6. Определение толщины тепловой изоляции «Тилит», «Пенофол» по заданному времени приостановки движения жидкого вещества в трубопроводах в целях предотвращения его замерзания или увеличения вязкости
- 9.7. Определение толщины тепловой изоляции «Тилит», «Пенофол» по заданной температуре на поверхности изоляции

- 9.8. Определение толщины тепловой изоляции «Тилит», «Пенофол» с целью предотвращения конденсации влаги из окружающего воздуха на покровном слое тепловой изоляции оборудования и трубопроводов, содержащих вещества с температурой ниже температуры окружающего воздуха
- 10. Общие требования к производству теплоизоляционных работ с применением изделий «Тилит», «Пенофол»
- Приложение А. Методы расчета тепловой изоляции «Тилит», «Пенофол» оборудования и трубопроводов.
- А.1. Расчетные формулы стационарной теплопередачи в теплоизоляционных конструкциях
- А.2. Расчет тепловой изоляции «Тилит», «Пенофол» оборудования и трубопроводов
- А.З. Расчет тепловой изоляции «Тилит», «Пенофол» трубопроводов тепловых сетей Приложение Б. Рисунки по монтажу изделий «Тилит», «Пенофол» Библиография

Введение

Настоящий стандарт разработан в соответствии с действующими нормами на проектирование тепловой изоляции, нормативно-технической документацией и техническим свидетельством на теплоизоляционные изделия «Тилит» и утеплитель «Пенофол» с учетом требований пожарной безопасности Свода правил "Определение категорий помещений, зданий и наружных установок по взрывопожарной и пожарной опасности" СП 12.13130.2009, СНиП21-01-97* «Пожарная безопасность зданий и сооружений») и охраны окружающей среды, а также с учетом современных тенденций в проектировании тепловой изоляции оборудования и трубопроводов, в том числе для обеспечения требований нормативных положений СП 60.13330.2012 «СНиП41-01-2003 Отопление, вентиляция и кондиционирование» и СП 61.13330.2012 «СНиП41-03-2003 Тепловая изоляция оборудования и трубопроводов», а также повышения уровня безопасности эксплуатируемых инженерных коммуникаций, улучшения эксплуатационных свойств и повышения долговечности конструкций тепловой изоляции, энергоэффективности конструкций тепловой изоляции.

В разработке настоящего стандарта организации принимали участие: А.С. Грабарев (НП СРО «ГЛАВВЕРХНЕВОЛЖСКСТРОЙ», Н.Д. Шилов, В.М. Цыганков, Р.П. Мясоедов, В.А. Кузьмин (ЗАО «Завод ЛИТ»)

CTO 04696843-004-2015

СТАНДАРТ ОРГАНИЗАЦИИ

ИЗДЕЛИЯ ТЕПЛОИЗОЛЯЦИОННЫЕ ИЗ ВСПЕНЕННОГО ПОЛИЭТИЛЕНА «ТИЛИТ[®]», «ПЕНОФОЛ[®]» В КОНСТРУКЦИЯХ ТЕПЛОВОЙ ИЗОЛЯЦИИ ОБОРУДОВАНИЯ И ТРУБОПРОВОДОВ

Руководство по применению, расчет и монтаж

Heat insulating products made of polyethylene foam "TILIT®", "PENOFOL®" in the design of heat insulation of equipment and pipelines

Guidance on the use, design and installation

Дата введения 2015-11-09

1. Область применения

Настоящий стандарт распространяется на изделия теплоизоляционные и конструкции тепловой изоляции (теплоизоляционные конструкции) с применением теплоизоляционных изделий из пенополиэтилена «Тилит» (изделия «Тилит»), изготавливаемых по СТО 04696843-003-2015 Технические условия (ТУ 2244-069-04696843-2003), утеплители «Пенофол» ТУ 2244-056-04696843-2001 и устанавливает требования к изделиям и элементам конструкций, их проектированию и выполнению работ по монтажу.

Настоящий стандарт является обязательным для применения всеми организациями и предприятиями НП СРО «ГЛАВВЕРХНЕВОЛЖСКСТРОЙ» независимо от места их расположения.

Требования настоящего стандарта подлежат соблюдению другими субъектами хозяйственной деятельности и приобретателями в случае, если данный стандарт указан в технической документации исполнителя работ, услуг или в договоре (контракте).

Изделия «Тилит» предназначены для эксплуатации внутри помещений, а также на открытом воздухе при условии полной защиты от попадания прямых солнечных лучей, в диапазоне температур окружающего воздуха от минус 40 до плюс 95°С, относительной влажности воздуха до 100% (при температуре изолируемой поверхности от минус 40 до плюс 100°С при кратковременном воздействии (6 ч) и от минус 40 до плюс 95°С без ограничения времени воздействия), в соответствии с требованиями СП 61.13330.2012 актуализированная редакция «СНиП 41-03-2003 Тепловая изоляция оборудования и трубопроводов», СНиП 2.08.01-89. Изделия «Тилит» могут использоваться в сочетании с покровным фольгированным материалом «Армофол ТК», ТУ 1811-081-04696843-2005 и «ТИТАНФЛЕКС» СТО 04696843-001-2015 .Такая теплоизоляционная конструкция устойчива к механическим повреждениям, атмосферным воздействиям и ультрафиолетовому излучению.

В качестве покровного слоя могут использоваться другие материалы, предусмотренные в СП 61.13330.2012.

Утеплители марки «Пенофол» предназначены для эксплуатации внутри помещений, а также на открытом воздухе в диапазоне температур окружающего воздуха от минус 60 до плюс 100°С, относительной влажности воздуха до 100%, . При наличии клеевого слоя («Пенофол» тип С) материал применяется при температуре окружающего воздуха от -60 до + 60°С.

2. Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие стандарты и своды правил:

ГОСТ 21.405-93 Система проектной документации в строительстве. Правила выполнения рабочей документации тепловой изоляции оборудования и трубопроводов.

ГОСТ 31913-2011 (EN ISO 9229:2007) «Межгосударственный стандарт. Материалы и изделия теплоизоляционные. Термины и определения.»

СП 12.13130.2009 «Определение категорий помещений, зданий и наружных установок по взрывопожарной и пожарной опасности»

СП 60.13330.2012 актуализированная редакция «СНиП 41-01-2003 Отопление, вентиляция и кондиционирования»

СП 61.13330.2012 актуализированная редакция «СНиП 41-03-2003 Тепловая изоляция оборудования и трубопроводов»

СНиП 12-04-2002 «Безопасность труда в строительстве. Часть 2. Строительное производство»

ГОСТ 12.1.044-89 «Система стандартов безопасности труда. Пожаровзрывоопасность веществ и материалов. Номенклатура показателей и методы их определения»

ГОСТ 30244-94 «Материалы строительные. Методы испытаний на горючесть»

ГОСТ 30402-96 «Материалы строительные. Метод испытания на воспламеняемость»

СП 131.13330.2012 актуализированная редакция «СНиП 23-01-99* Строительная климатология»

ТУ 1811-081-04696843-2005 «Армофол ТК»

ТУ 2245-047-04696843-97 с изм. 1, 2, 3 Лента полиэтиленовая армированная самоклеящаяся «Тилит»

ТУ 1811-054-04696843-2012 «ЛАС» Лента алюминиевая самоклеящаяся

ТУ 1811-054-04696843-2012 «ЛАС-А» Лента алюминиевая самоклеящаяся армированная

ТУ 1811-054-04696843-2012 «ЛАС-П» Лента алюминиевая самоклеящаяся повышенной прочности

ТУ 2245-095-04696843-2012 с изм. №1, 2 СТО 04696843-001-2015 Технические условия «ТИТАНФЛЕКС» Изолирующий покрывной материал

ТУ 2244-069-04696843-2003 в редакции 2009г. СТО 04696843-003-2015 Технические условия Изделия из пенополиэтилена «Тилит»

ТУ 2244-056-04696843-2001 в редакции 2010г. с изм. № 1, 2 утеплители «ПЕНОФОЛ»

ТУ 2291-093-04696843-2010 Чехол энергосберегающий «Тилит»

СП 124.13330.2012 «СНиП 41-02-2003. Тепловые сети».

ГОСТ 17314-81 «Устройства для крепления тепловой изоляции стальных сосудов и аппаратов. Конструкция и размеры. Технические требования»

Примечание - При пользовании настоящим стандартом целесообразно проверить действие ссылочных нормативных документов в информационной системе общего пользования -на официальных сайтах национального органа Российской Федерации по

стандартизации и НОСТРОЙ в сети Интернет или по ежегодно издаваемым информационным указателям, опубликованным по состоянию на 1 января текущего года. Если ссылочный документ заменен (изменен), то при пользовании настоящим стандартом следует руководствоваться новым (измененным) документом. Если ссылочный документ отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

3. Термины и определения

В настоящем стандарте применены термины с соответствующими определениями:

бандаж: кольцо, выполненное из металлической ленты и предназначенное для крепления к внутреннему трубопроводу зданий и сооружений теплоизоляционного материала или облицовки.

водопоглощение: способность материала или изделия впитывать и удерживать в порах и капиллярах воду.

выравнивающий слой: элемент теплоизоляционной конструкции, выполняемый из упругих рулонных или листовых материалов, устанавливается под мягкий покровный слой (например из лакостеклоткани) для выравнивания формы поверхности.

инженерное оборудование зданий: система, предназначенная для постоянного функционирования в строительных сооружениях и являющаяся частью оборудования отопления, вентиляции и кондиционирования этих сооружений. [ГОСТ 31913, статья 2.6.2]

коэффициент теплопроводности, (λ) **, Вт/(м х °С)**: количество теплоты, передаваемое за единицу времени через единицу площади изотермической поверхности при температурном градиенте, равном единице (СП 61.13330.2012)

лист : теплоизоляционное тонкое, гибкое изделие прямоугольной формы, с обкладкой или кашировкой или без них. [ГОСТ 31913].

максимальная температура: максимально допустимая температура среды или поверхности, контактирующей с поверхностью материала, при длительном воздействии которой, материал сохраняет свои свойства. [ГОСТ 31913]

массивная теплоизоляция: теплоизоляционный материал, теплоизоляционные свойства которого являются функцией от его толщины и теплопроводности.

минимальная рабочая температура: наиболее низкая температура, при которой теплоизоляционное изделие заданной толщины, предназначенное для конкретного применения, будет продолжать функционировать в установленных пределах эксплуатационных характеристик. [ГОСТ 31913, статья 2.6.9.2]

многослойная теплоизоляционная конструкция: конструкция, состоящая из двух и более слоев одинаковых или различных теплоизоляционных материалов (СП 61.13330.2012, раздел 3).

промышленная установка: установка и связанные с ней резервуары, трубопроводы, воздуховоды и т. д., используемые промышленными предприятиями для производства или хранения продукции, или для транспортирования жидкости. [ГОСТ 31913]

Пароизоляционный слой: элемент теплоизоляционной конструкции оборудования и трубопроводов с температурой ниже температуры окружающей среды, предохраняющий теплоизоляционный слой от проникновения в нее паров воды вследствие разности парциальных давлений пара у холодной поверх ности и в окружающей среде; (СП 61.13330.2012, раздел 3).

паропроницаемость, ^µ, мг/(м х ч х Па): способность материала пропускать водяные пары, содержащиеся в воздухе, под действием разности их парциальных давлений на противоположных поверхностях слоя материала;

пенополиэтилен: полужесткий или эластичный теплоизолирующий материал, с закрытоячеистой структурой, полученный вспениванием полиэтилена и/или его сополимеров с другими полиолефинами

рабочая температура: температура вещества в изолируемом оборудовании или трубопроводе в соответствии с требованиями технологического режима [ГОСТ 31913].

расчетная теплопроводность: коэффициент теплопроводности теплоизоляционного материала в эксплуатационных условиях с учетом его температуры, влажности, монтажного уплотнения и наличия швов в теплоизоляционной конструкции;

покрытие: функциональный или декоративный поверхностный слой, наносимый путем окрашивания, напыления, заливки или оштукатуривания [ГОСТ 31913].

плотность теплоизоляционного материала, ρ **, кг/м3:** величина, определяемая отношением массы материала ко всему занимаемому им объему, включая поры и пустоты;

покровный слой: элемент конструкции, устанавливаемый по наружной поверхности тепловой изоляции для защиты от механических повреждений и воздействия окружающей среды. [СП 61.13330.2012, пункт 3.9]

предохранительный слой: элемент теплоизоляционный конструкции, входящий, как правило, в состав теплоизоляционной конструкции для оборудования и трубопроводов с температурой поверхности ниже температуры окружающей среды с целью защиты пароизоляционного слоя от механических повреж дений [СП 61.13330.2012, пункт 3.11]

рулон: форма поставки спирально свернутого листа в цилиндр. [ГОСТ 31913]

тепловая изоляция (теплоизоляция): общий термин, применяемый для описания процесса уменьшения теплопереноса через систему или для описания изделия, элементов системы, которые выполняют эту функцию (ГОСТ Р 52953-2008, пункт 6.1).

теплоизоляционное изделие: теплоизоляционный материал в виде готового изделия, включающего любые облицовки, обкладки или покрытие. [ГОСТ Р 52953-2008, пункт 4.1]

теплоизоляционная конструкция: конструкция, состоящая из одного или нескольких слоев теплоизоляционного материала (изделия), защитно-покровного слоя и элементов крепления. В состав теплоизоляционной конструкции могут входить

пароизоляционный, предохранительный и выравнивающий слои. [СП 61.13330.2012, пункт 3.7]

теплоизоляционный материал: материал, предназначенный для уменьшения теплопереноса, теплоизоляционные свойства которого зависят от его химического состава и (или) физической структуры. [ГОСТ Р 52953-2008, пункт 3.1]

температурные деформации: тепловое расширение или сжатие изолируемой поверхности и элементов конструкции под воздействием изменения температурных условий при монтаже и эксплуатации изолируемого объекта;

трубка: теплоизоляционное изделие, применяемое для теплоизоляции объектов цилиндрической формы. [ГОСТ 31913]

уровень: заданное значение, которое является верхней или нижней границей требования. [ГОСТ 31913].

уплотнение теплоизоляционных материалов: монтажная характеристика, определяющая плотность теплоизоляционного материала после его установки в проектное положение в конструкции. Уплотнение материалов характеризуется коэффициентом уплотнения, значение которого определяется отношением объема материала или изделия к его объему в конструкции;

4. Общие положения

- 4.1. Теплоизоляционная конструкция должна обеспечивать параметры теплохолодоносителя при эксплуатации, нормативный уровень тепловых потерь оборудованием и трубопроводами, безопасную для человека температуру их наружных поверхностей.
- 4.2. Конструкции тепловой изоляции трубопроводов и оборудования должны отвечать требованиям:
- энергоэффективности иметь оптимальное соотношение между стоимостью теплоизоляционной конструкции и стоимостью тепловых потерь через изоляцию в течение расчетного срока эксплуатации;
- эксплуатационной надежности и долговечности выдерживать без снижения теплозащитных свойств и разрушения эксплуатационные температурные, механические, химические и другие воздействия в течение расчетного срока эксплуатации;
- безопасности для окружающей среды и обслуживающего персонала при эксплуатации и утилизации.

Материалы, используемые в теплоизоляционных конструкциях, не должны выделять в процессе эксплуатации вредные, пожароопасные и взрывоопасные, неприятно пахнущие вещества, а также болезнетворные бактерии, вирусы и грибки, в количествах, превышающих предельно допустимые концентрации, установленные в санитарных нормах.

4.3. При выборе материалов и изделий, входящих в состав теплоизоляционных конструкций для поверхностей с положительными температурами теплоносителя (20°С и

выше), следует учитывать следующие факторы:

месторасположение изолируемого объекта;

температуру изолируемой поверхности;

температуру окружающей среды;

требования пожарной безопасности;

агрессивность окружающей среды или веществ, содержащихся в изолируемых объектах; коррозионное воздействие;

материал поверхности изолируемого объекта;

допустимые нагрузки на изолируемую поверхность;

наличие вибрации и ударных воздействий;

требуемую долговечность теплоизоляционной конструкции;

санитарно-гигиенические требования;

температуру применения теплоизоляционного материала;

теплопроводность теплоизоляционного материала;

температурные деформации изолируемых поверхностей;

конфигурация и размеры изолируемой поверхности;

условия монтажа (стесненность, высотность, сезонность и др.);

условия демонтажа и утилизации.

Теплоизоляционная конструкция трубопроводов тепловых сетей подземной бесканальной прокладки должна выдерживать без разрушения:

воздействие грунтовых вод;

нагрузки от массы вышележащего грунта и проходящего транспорта.

При выборе теплоизоляционных материалов и конструкций для поверхностей с температурой теплоносителя 19 °С и ниже и отрицательной температурой дополнительно следует учитывать относительную влажность окружающего воздуха, а также влажность и паропроницаемость теплоизоляционного материала.

4.4.В состав конструкции тепловой изоляции для поверхностей с положительной температурой в качестве обязательных элементов должны входить:

теплоизоляционный слой;

покровный слой;

элементы крепления.

4.5. В состав конструкции тепловой изоляции для поверхностей с отрицательной температурой в качестве обязательных элементов должны входить:

теплоизоляционный слой;

покровный слой;

элементы крепления.

Антикоррозионные покрытия изолируемой поверхности не входят в состав теплоизоляционных конструкций.

5.Требования к теплоизоляционным конструкциям для оборудования и трубопроводов с применением изделий «Тилит», «Пенофол»

5.1 Общие положения

5.1.1 Теплоизоляционные конструкции с применением изделий «Тилит», «Пенофол» должны выполняться в соответствии с требованиями настоящего стандарта.

Требования к изделиям «Тилит», «Пенофол» приведены в разделе 6.

5.1.2 Теплоизоляционные конструкции применяют для оборудования и трубопроводов промышленных предприятий, а также объектов ЖКХ, включая:

- технологические трубопроводы, расположенные в помещениях категорий В, Г, Д и на открытом воздухе;
- трубопроводы тепловых сетей с температурой теплоносителя в по дающем трубопроводе не более 95°С при надземной (в помещениях, технических подпольях, чердаках, подвалах и на открытом воздухе) и подземной (в каналах и тоннелях) прокладках;
- трубопроводы систем отопления, горячего и холодного водоснабжения в жилищном и гражданском строительстве, а также на промышленных предприятиях;
- воздуховоды, трубопроводы и оборудование систем вентиляции и кондиционирования воздуха;
- газопроводы, нефтепроводы, трубопроводы с нефтепродуктами;
- фланцевые соединения трубопроводов, муфтовую и фланцевую арматуру;
- технологические аппараты и трубопроводы производств с технологическими процессами с повышенными требованиями к чистоте воздуха в помещениях (микробиология, радиоэлектроника, пищевая промышленность и т.д.);
- технологические аппараты различных отраслей промышленности с учетом допустимой температуры применения изделий, требований технологического проектирования и безопасности для конкретных объектов;
- резервуары для хранения холодной воды в системах водоснабжения.
- 5.1.3 В теплоизоляционных конструкциях с применением изделий «Тилит», «Пенофол» пароизоляционный слой не устраивают, поскольку теплоизоляционные материалы из вспененного полиэтилена имеют закрыто-пористую структуру и при герметизации швов не допускают выпадения конденсата на поверхности изолируемой конструкции. При исключении пароизоляционного слоя, следует предусматривать герметизацию стыков изделий материалами, не пропускающими водяные пары (см. раздел 8). 5.1.4 В теплоизоляционных конструкциях для оборудования и трубопроводов, расположенных в помещениях, технических подпольях, чердаках, каналах и тоннелях, изделия «Тилит» могут применяться без покровного слоя.
- 5.1.5 Для тепловой изоляции трубопроводов, проложенных в конструкциях полов и стен, рекомендуется применять изделия «Тилит Супер Протект» с дифференцированным полимерным покрытием красного или синего цвета в соответствии с 6.4. Полимерное покрытие повышает прочность трубок на 50%, тем самым, делая изоляцию надежной защитой для труб, а упругий слой полиэтиленовой пены помогает компенсировать тепловое расширение труб.
- 5.1.6 В теплоизоляционных конструкциях для оборудования и трубопроводов, расположенных на открытом воздухе, изделия «Тилит» без покрытия должны быть защищены от воздействия ультрафиолетового излучения покровным слоем.
- 5.1.7 В теплоизоляционных конструкциях в качестве покровного слоя рекомендуется применять следующие материалы и изделия «Армофол ТК» и «ТИТАНФЛЕКС»
- гибкий покровный материал «Армофол ТК» по ТУ 1811-081-04696843-2005;
- изолирующий покровный материал «ТИТАНФЛЕКС» по ТУ 2245-095-04696843-2012 с изм. №1, 2 (СТО 04696843-001-2015 Технические условия)

Требования к материалам покровного слоя «Армофол ТК», «ТИТАНФЛЕКС» приведены в разделе 7.

- другие покровные материалы, предусмотренные в СП 61.13330.2012 актуализированная редакция «СНиП 41-03-2003 Тепловая изоляция оборудования и трубопроводов»

Примечание: При необходимости установки металлического покрытия в конструкциях тепловой изоляции «Тилит» для трубопроводов его крепление

осуществляется бандажами при диаметре изоляции до 600 мм включительно или винтами и заклепками при диаметре теплоизоляционной конструкции более 600 мм. В теплоизоляционных конструкциях с металлическим покровным слоем установку опорных конструкций (скоб или опорных колец) на горизонтальных трубопроводах не предусматривают.

При изоляции вертикальных трубопроводов при установке металлического покрытия в зависимости от толщины изоляции и высоты трубопровода могут быть предусмотрены опорные конструкции, предотвращающие деформацию и сползание покрытия.

Опорные конструкции для крепления металлического покрытия должны быть изготовлены из материала с теплопроводностью не более 0,3 Bm/(м°С) или иметь прокладки из материала с низкой теплопроводностью.

При применении металлического покрытия торцы тепловой изоляции трубопровода у фланцевых соединений должны быть закрыты диафрагмами. Толщину металлических листов, лент, применяемых для покровного слоя, в зависимости от наружного диаметра или конфигурации теплоизоляционной конструкции следует принимать по таблице 16 СП 61.13330.2012 «СНиП41-03-2003 Тепловая изоляция оборудования и трубопроводов»

Размещение крепежных деталей на изолируемых поверхностях следует принимать в соответствии с ГОСТ 17314-81

Крепление металлического покрытия может осуществляться винтами или заклепками (Рис. 30 —31). Шаг установки винтов (заклепок): по горизонтали 150 - 200 мм, по окружности — 300 мм. Для ускорения монтажа и сокращения количества проколов теплоизоляционного слоя элементы покрытия могут быть соединены лежачими фальцами шириной 8-10 мм (разрез Г-Г рис. 31) в крупноразмерные картины. Для придания конструкции покрытия жесткости элементы покрытия зигуются по торцам и по горизонтали с радиусом зига 5 мм.

- 5.1.8 Для крепления изделий «Тилит», «Пенофол» и элементов покровного слоя в проектном положении рекомендуется применять:
- клей «Тилит» ТУ РБ 101199391.005-2004;
- «ЛАС» Лента алюминиевая самоклеящаяся ТУ 1811-054-04696843-2012
- «ЛАС-А» Лента алюминиевая самоклеящаяся армированная ТУ 1811-054-04696843-2012
- «ЛАС-П» Лента алюминиевая самоклеящаяся повышенной прочности ТУ 1811-054-04696843-2012
- ленту полиэтиленовую армированную «Тилит» по ТУ 2245-047-04696843-97 с изм. 1, 2, 3
- заклепки металлические

Требования к аксессуарам для крепления изделий «Тилит», «Пенофол» приведены в разделе 8.

- 5.2 Теплоизоляционные конструкции для оборудования и трубопроводов тепловых сетей систем отопления, горячего и холодного водоснабжения, технологических систем
- 5.2.1 При проектировании теплоизоляционных конструкций, предназначенных для оборудования и трубопроводов тепловых сетей систем отопления, горячего и холодного водоснабжения, технологических систем следует учитывать факторы, приведенные в п. 4.2-4.3
- 5.2.2 Изделия «Тилит», «Пенофол» следует применять в составе теплоизоляционных конструкций в соответствии с требованиями СП 61.13330.2012 актуализированная редакция «СНиП 41-03-2003 Тепловая изоляция оборудования и трубопроводов», требований пожарной и экологической безопасности, в соответствии с нормами технологического проектирования соответствующих отраслей промышленности. 5.2.3 В теплоизоляционных конструкциях в качестве тепловой изоляции рекомендуется применять:
- трубки «Тилит Супер» для трубопроводов с наружным диаметром от 15 до 159 мм включительно;
- рулоны (листы) «Тилит Супер», рулоны (листы) «Тилит Супер АЛ», рулоны (листы) «Пенофол» для оборудования и трубопроводов с наружным диаметром более 159 мм;
- трубки «Тилит Супер Протект» для трубопроводов с наружным диаметром от 15 до 35 мм включительно, расположенных внутри строительных конструкций (стены, перекрытия).
- 5.2.4 В случае, если расчетная толщина теплоизоляционного слоя превышает толщину, предусмотренную номенклатурой трубок «Тилит Супер», рулонов (листов) «Тилит Супер», рулонов (листов) «Тилит Супер АЛ»и рулонов (листов) «Пенофол», следует применять двух или трехслойную конструкцию. В качестве второго и последующего слоев рекомендуется использовать рулоны (листы) «Тилит Супер», рулоны (листы) «Тилит Супер АЛ» и рулоны (листы) «Пенофол».
- 5.2.5 Для крепления трубок «Тилит Супер» на трубопроводах продольные и поперечные швы изделий следует склеить клеем «Тилит». Рекомендуется дополнительно проклеить швы изделий лентой полиэтиленовой армированной самоклеящейся «Тилит». Для крепления рулонов (листов) «Тилит Супер АЛ», «Пенофол" рекомендуется дополнительно проклеить швы изделий лентой алюминиевой самоклеящейся «ЛАС».
- 5.2.6 Для крепления рулонов (листов) «Тилит Супер» на трубопроводах швы изделий

следует склеить клеем «Тилит». Рекомендуется дополнительно проклеить швы изделий лентой полиэтиленовой армированной самоклеящейся «Тилит», а также закрепить изделия бандажами из ленты полиэтиленовой армированной самоклеящейся «Тилит», расположенных с шагом 500-600 мм.

- 5.2.7 В теплоизоляционных конструкциях, предназначенных для трубопроводов подземной канальной прокладки, проклейка швов лентой полиэтиленовой армированной самоклеящейся «Тилит» обязательна.
- 5.2.8 Для теплоизоляции отводов, тройников и переходов на месте выполнения монтажных работ изготавливают детали из трубок «Тилит Супер» или рулонов (листов) «Тилит Супер», швы которых склеивают клеем «Тилит».
- 5.2.9 Несъемную тепловую изоляцию муфтовой арматуры, установленной на трубопроводах, выполняют изделиями «Тилит» вместе с тепловой изоляцией трубопровода. Вырез под привод выполняют на месте выполнения монтажных работ.
- 5.2.10 Съемную тепловую изоляцию трубопроводной арматуры, установленной на трубопроводах систем отопления и водоснабжения, выполняют чехлами энергосберегающими «Тилит». Чехлы энергосберегающие «Тилит» значительно продлевают срок службы запорной арматуры.

Крепление чехлов энергосберегающих «Тилит» производится с помощью многоразовых застежек-липучек. Требования к энергосберегающим чехлам приведены в разделе 8.

- 5.2.11 В многослойных теплоизоляционных конструкциях, предназначенных для трубопроводов, установку второго и последующего слоев тепловой изоляции выполняют с перекрытием швов каждого предыдущего слоя. Швы всех слоев тепловой изоляции склеивают клеем «Тилит». Рекомендуется дополнительно проклеивать швы наружного слоя лентой полиэтиленовой армированной самоклеящейся «Тилит».
- 5.2.12 Для тепловой изоляции емкостей применяют рулоны (листы) «Тилит Супер» или самоклеящиеся рулоны (листы) «Тилит Блек Стар Дакт». Рулоны (листы) «Тилит Супер» приклеивают к изолируемой поверхности емкости клеем «Тилит». Швы между изделиями следует проклеить лентой полиэтиленовой армированной самоклеящейся «Тилит».
- 5.2.13 В многослойных теплоизоляционных конструкциях для емкостей установку второго и последующего слоев тепловой изоляции выполняют с перекрытием швов предыдущего слоя. Рулоны (листы) «Тилит Супер» каждого последующего слоя приклеивают к предыдущему клеем «Тилит». Швы между изделиями «Тилит» одного слоя проклеивают лентой полиэтиленовой армированной самоклеящейся «Тилит».
- 5.2.14 При тепловой изоляции оборудования и трубопроводов торцы изделий «Тилит» на краевых конструкциях и места их примыкания к металлическим поверхностям (люки, патрубки, штуцера, фланцевые соединения) должны быть проклеены лентой полиэтиленовой армированной самоклеящейся «Тилит».
- 5.2.15 При тепловой изоляции оборудования и трубопроводов рулонами (листами) «Тилит Супер АЛ», «Пенофол» тип А или самоклеящимися рулонами (листами) «Тилит Блек Стар Дакт АЛ», «Пенофол» тип С (самоклеящийся) и при использовании этих изделий в качестве наружного слоя в многослойной конструкции швы изделий следует проклеивать лентой алюминиевой самоклеящейся «ЛАС». При необходимости лента может быть использована в качестве бандажей, выполненных с шагом 500 600 мм.
- 5.2.16 Требования к применению изделий «Тилит» с покрытием и без покрытия приведены 5.1.4-5.1.8.
- 5.2.17 Установка гибкого покровного материала «Армофол ТК» должна производиться с нахлестом 40-50 мм по продольным и поперечным швам. Крепление материала «Армофол ТК» в исполнении без клеевого слоя осуществляют проклеиванием нахлестов

клеем «Тилит».

Продольные и поперечные швы покровного материала могут быть дополнительно проклеены лентой алюминиевой самоклеящейся армированной «ЛАС-А». При необходимости лента может быть использована в качестве бандажей, выполненных с шагом 500 - 600 мм.

В теплоизоляционных конструкциях для оборудования и трубопроводов, расположенных на открытом воздухе, все швы покровного материала «Армофол ТК» и ленты алюминиевой самоклеящейся армированной «ЛАС-А» должны быть герметизированы силиконовым герметиком.

5.2.18 Крепление изолирующего покровного материала «ТИТАНФЛЕКС» должно производиться при помощи металлических заклепок, проклейкой швов покровного материала лентой «ЛАС-П» (лента алюминиевая самоклеящаяся повышенной прочности) и силиконовым герметиком для герметизации швов (при расположении изолируемого объекта на открытом воздухе).

Заклепки используют при толщине теплоизоляционного слоя 10 мм и выше и устанавливают с шагом 200 - 300 мм.

Монтаж рекомендуется начинать с установки материала «ТИТАНФЛЕКС» на фасонные части и арматуру. Затем изолируются прямые участки трубопроводов. Детали из материала «ТИТАНФЛЕКС» необходимо устанавливать внахлест друг на друга 3-5 см. Швы материала необходимо располагать так, чтобы предотвратить возможное затекание влаги внутрь изоляционной конструкции. Швы продольные и поперечные необходимо делать внахлест. Для герметизации все швы (продольные и поперечные) проклеиваются лентой алюминиевой самоклеящейся «ЛАС-П», при этом лента должна закрывать не только сам шов, но и отверстия с заклепками. Лента должна закрывать заклепки на 10-15 мм. Перед наклеиванием ленты «ЛАС-П» рекомендуется обезжирить участки проклейки. Бандажи из ленты алюминиевой самоклеящейся повышенной прочности «ЛАС-П» устанавливают с шагом 600 мм.

В случае установки покрытия «ТИТАНФЛЕКС» на теплоизоляционные материалы, обладающие большим коэффициентом термического расширения (например, вспененные синтетические каучуки), необходимо это делать при средней рабочей температуре изоляционного слоя.

5.2.19 При тепловой изоляции вертикальных трубопроводов и оборудования с применением теплоизоляции в два и более слоев и покровных материалов в зависимости от толщины теплоизоляции и высоты трубопровода предусмотрены опорные конструкции (разгружающие устройства), предотвращающие деформацию и сползание покровного материала. Разгружающие устройства располагают с шагом 3-4 метра по высоте трубопровода или оборудования. Конструкция разгружающих устройств не должна иметь сквозных теплопроводных включений.

Разгружающие устройства выполняют из металла или пиломатериалов. Разгружающие устройства, изготовленные из пиломатериалов, должны быть пропитаны антисептическими составами или антипиренами.

5.2.20 Если расчетная толщина полимерного теплоизоляционного слоя не превышает значений толщины изделий в соответствии с номенклатурой для установки в один слой, допускается к применению конструкция из самоклеящихся рулонов «Тилит» с приклеенными (самоклеящимися) покрытиями «Армофол ТК» и «ТИТАНФЛЕКС» и герметизацией швов.

При применении такой конструкции установки разгружающих устройств и деревянного

каркаса не требуется.

5.3 Теплоизоляционные конструкции для оборудования, трубопроводов и воздуховодов систем вентиляции и кондиционирования воздуха

- 5.3.1 При проектировании теплоизоляционных конструкций, предназначенных для оборудования, трубопроводов и воздуховодов систем вентиляции и кондиционирования воздуха, следует руководствоваться требованиями 5.2.1 и 5.2.2.
- 5.3.2 В теплоизоляционных конструкциях рекомендуется применять:
- трубки «Тилит Блэк Стар», «Тилит Блэк Стар Сплит» (с защитным полимерным слоем от ультрафиолетового излучения) для тепловой изоляции трубопроводов с наружным диаметром от 6 до 28 мм включительно;
- рулоны (листы) «Тлит Блэк Стар Дакт» и рулоны (листы) «Тилит Блэк Стар Дакт АЛ», «Пенофол» тип С для тепловой изоляции воздуховодов.
- 5.3.3 Теплоизоляционные конструкции для трубопроводов должны быть герметичными.
- 5.3.4 Трубки «Тилит Блэк Стар» следует устанавливать без продольного разреза. Продольные и поперечные швы трубок «Тилит Блэк Стар» должны быть склеены клеем «Тилит». Края трубок «Тилит Блэк Стар» должны быть приклеены к изолируемой поверхности клеем «Тилит» на ширину клеевого слоя не менее толщины трубки. Все швы трубок «Тилит Блэк Стар» должны быть проклеены лентой полиэтиленовой армированной самоклеящейся «Тилит».
- 5.3.5 Швы склеенных рулонов (листов) «Тилит Блэк Стар Дакт», а также места их примыкания к фланцам воздуховодов следует проклеивать лентой полиэтиленовой армированной самоклеящейся «Тилит».
- Швы рулонов (листов) «Тилит Блэк Стар Дакт АЛ», «Пенофол» тип С, а также места их примыкания к фланцам воздуховодов следует проклеивать лентой алюминиевой самоклеящейся «ЛАС».
- 5.3.6 В случае, если расчетная толщина теплоизоляционного слоя превышает толщину, предусмотренную номенклатурой трубок «Тилит Блэк Стар», рулонов (листов) «Тилит Блэк Стар Дакт» и рулонов (листов) «Тилит Блэк Стар Дакт АЛ», «Пенофол» тип С следует применять двух- или трехслойную теплоизоляционную конструкцию. В качестве второго и последующего слоев рекомендуется использовать рулоны (листы) «Тилит Блэк Стар Дакт» или рулоны (листы) «Тилит Блэк Стар Дакт АЛ», «Пенофол» тип С.
- При тепловой изоляции воздуховодов для улучшения адгезии между слоями в качестве нижних слоев многослойной конструкции рекомендуется использовать рулоны (листы) «Тилит Блэк Стар Дакт АЛ», «Пенофол» тип С.
- 5.3.7 Требования к установке покровного слоя теплоизоляционной конструкции приведены в 5.1.4-5.1.8.
- 5.3.8 В теплоизоляционных конструкциях, предназначенных для предотвращения конденсации влаги из окружающего воздуха на поверхности изолируемого объекта, рекомендуется применять трубки «Тилит Блэк Стар» и рулоны (листы) «Тилит Блэк Стар Дакт» без покровного слоя.
- 5.3.9 При необходимости применения покровного слоя в теплоизоляционных конструкциях, предназначенных для трубопроводов систем кондиционирования, рекомендуется использовать ленту алюминиевую самоклеящуюся «ЛАС» и ленту алюминиевую самоклеящуюся «ЛАС-А». Допускается использовать другие виды покровных материалов.

При необходимости применения покровного слоя в теплоизоляционных конструкциях воздуховодов, рекомендуется использовать покровный материал «Армофол ТК»

самоклеящийся или самоклеящийся гибкий покровный материал «ТИТАНФЛЕКС». Требования к установке материала «Армофол ТК» и «ТИТАНФЛЕКС» приведены в 5.2.17-5.2.18

5.3.10 Требования к установке разгружающих устройств приведены в 5.2.19-5.2.20

6. Требования к теплоизоляционным пенополиэтиленовым изделиям «Тилит», «Пенофол».

6.1 В зависимости от формы изделия «Тилит» подразделяют на виды, приведенные в таблице 1.

Таблица 1

Наименование вида	Описание вида
Трубка	Полая цилиндрическая трубка
Лист	Гибкое изделие прямоугольной формы

- 6.1.1 Утеплитель «Пенофол» выпускается в виде рулонов (листов) следующих типов:
- А материал на основе пенополиэтилена с односторонним фольгированием;
- С материал на основе пенополиэтилена с односторонним фольгированием, с другой стороны которого нанесен клеевой слой, защищенный антиадгезионным покрытием; 6.2 В зависимости от цвета и физико-технических показателей свойств изделия «Тилит» подразделяют на марки, приведенные в таблице 2.

Таблица 2

Наименование марки изделия	Цвет изделия	Область применения
Супер	Серебристо-серый	Оборудование и трубопроводы
		тепловых сетей систем
		отопления, горячего и
		холодного водоснабжения,
		технологических систем
Блэк Стар	Черный	Оборудование, трубопроводы и
		воздуховоды систем
		вентиляции и
		кондиционирования воздуха

Физико-технические показатели свойств изделий «Тилит», «Пенофол» приведены в таблице 6 и 6.1

6.3 Рулоны(листы) «Тилит» могут быть в простом и самоклеящемся исполнении. Рулоны(листы) в самоклеящемся исполнении должны быть покрыты с одной стороны клеевым слоем, защищенным антиадгезионным материалом.

Рулоны(листы) «Тилит» марки «Блэк Стар» в самоклеящемся исполнении имеют обозначение «Дакт», марки «Супер» - «СК».

6.4 Изделия «Тилит» изготавливают с покрытиями или без них. Виды применяемых покрытий приведены в таблице 3.

Таблица 3

Наименование покрытия	Обозначение покрытия
Полированная алюминиевая фольга	АЛ
Полимерная пленка	Протект, Сплит

Покрытие «Протект» может быть синего (обозначение «С») или красного цвета (обозначение «К»).

Изделия с покрытием «Протект» красного цвета рекомендуется использовать для

тепловой изоляции трубопроводов горячего водоснабжения и подающих трубопроводов систем отопления, с покрытием «Протект» синего цвета - для тепловой изоляции трубопроводов холодного водоснабжения и обратных трубопроводов систем отопления. Покрытие «Сплит» серебристого цвета для теплоизоляционных трубок для систем кондиционирования «Тилит Блэк Стар».

6.5 Размеры трубок «Тилит» в зависимости от вида покрытия и марки изделий приведены в таблице 4.

Таблица 4

· · · · · · · · · · · · · · · · · · ·	тренний диаметр Толщина стенки				
Обозначение	Номинальное значение, мм	Предельные отклонения, мм	Номинальное значение, мм	Предельные отклонения, мм	Длина трубок, мм
Марка «Супер)»				
15	17	+2	6; 9; 13	+2	2000+50; 1000+50
18	20	+2	6; 9; 13	+2	2000+50; 1000+50
22	24	+2	6; 9; 13; 20;25	+2	2000+50; 1000+50
25	27	+3	6; 9; 13; 20;25	+2	2000+50
28	30	+3	6; 9; 13; 20;25	+2	2000+50; 1000+50
30	32	+3	6; 9; 13; 20;25	+2	2000+50
35	35	+3	6; 9; 13; 20;25	+2	2000+50; 1000+50
42	42	+3	9; 13; 20;25	+3	2000+50; 1000+50
45	45	+3	9; 13; 20;25	+3	2000+50
48	48	+3	9; 13; 20;25	+3	2000+50
54	54	+5	9; 13; 20;25	+3	2000+50
60	60	+5	9; 13; 20;25	+3	2000+50
64	64	+5	9; 13; 20;25	+3	2000+50
76	76	+6	9; 13; 20;25	+3	2000+50
89	89	+6	9; 13; 20;25	+3	2000+50
ПО	ПО	+6	9; 13; 20;25	+3	2000+50
114	114	+6	9; 13; 20;25	+5	2000+50
133	133	+6	9; 13; 20;25	+5	2000+50
140	140	+6	9; 13; 20;25	+5	2000+50
160	160	+6	9; 13; 20;25	+5	2000+50
Марка «Супер	» с покрытием	«Протект»			
15	17	+2	4	+2	10000+100
			6; 9	+2	2000+50
18	20	+2	4	+2	10000+100
			6; 9	+2	2000+50
22	24	+2	4 6; 9	+2 +2	10000+100 2000+50

28 30	13	4	+2	10000+100	
	+3	6; 9	+2	2000+50	
25	35	. 3	4	+2	10000+100
35	35	+3	6; 9	+2	2000+50
Марка «Блэк	Стар», Марка «	Блэк Стар Сп	лит»		
6	7	+2	6; 9	+2	2000+50
8	9	+2	6; 9	+2	2000+50
10	11	+2	6; 9	+2	2000+50
12	14	+3	6; 9	+2	2000+50
15	17	+3	6; 9	+2	2000+50
18	20	+3	6; 9	+2	2000+50
22	24	+3	6; 9	+2	2000+50
25	27	+3	6; 9	+2	2000+50
28	30	+3	6; 9	+2	2000+50

6.6 Размеры рулонов (листов) «Тилит», «Пенофол» в зависимости от марки, исполнения и покрытия приведены в таблице 5.

Толщина, мм		Ширина, мм Длина, м			
Номинальное	Предельные	Номинальное	Предельные	Номинальное	Предельные
значение	отклонения	значение	отклонения	значение	отклонения
Марка «Супер», марка «Супер» в исполнении «СК»					
10	±1	1000; 1200	±5	20	+0,2
13	±1	1000; 1200	±5	14	+0,2
20	±1	1000; 1200	±5	10	+0,1
Марка «Супер»	с покрытием «	«АЛ», марка «Су	пер» в исполне	нии «СК» с покр	ытием «АЛ»
3	±0,5	1000; 1200	±5	30	+0,3
5	±0,5	1000; 1200	±5	30	+0,3
10	±1	1000; 1200	±10	20	+0,2
15	±1	1000; 1200	±10	10	+0,1
20	±1,5	1000; 1200	±10	10	+0,1
Марка «Блэк Ст	ар» в исполне	нии «Дакт», мар	ка «Блэк Стар»	в исполнении «	Дакт» с
покрытием «АЛ	l»				
3	±0,5	1000; 1200	±5	15	+0,2
5	±0,5	1000; 1200	±5	15	+0,2
8	±0,5	1000; 1200	±5	20	+0,2
10	±1	1000; 1200	±5	20	±0,2
15	±1	1000; 1200	±5	20	±0,2
20	±1	1000; 1200	±5	10	±0,1
«Пенофол» тиг	1 A				
3	±0,5	1200; 1500	±20	30	+ 0,3
4	±0,5	1200; 1500	±20	30	+ 0,3
5	±0,5	1200; 1500	±20	30	+ 0,3
6	±0,5	1200; 1500	±20	30	+ 0,3
8	±0,8	1200	±20	15	+ 0,3
10	±1	1200	±20	15	+ 0,3
«Пенофол» тиг	1 C				

3	±0,5	600;1200	±10; ±20	30	+ 0,3
4	±0,5	600;1200	±10; ±20	30	+ 0,3
5	±0,5	600; 1200	±10; ±20	30	+ 0,3
6	±0,5	600;1200	±10; ±20	30	+ 0,3
8	±0,8	600;1200	±10; ±20	15	+ 0,3
10	±1	600;1200	±10; ±20	15	+ 0,3

6.7 Физико-технические показатели свойств изделий «Тилит» в зависимости от марки должны соответствовать приведенным в таблице 6.

Таблица 6

10.05.0.40				
	Значение для марок			
Наименование показателя	Супер	Блэк Стар		
Плотность, кг/м³	25±5	25+5		
Прочность при разрыве, МПа, не	0,10	0,10		
менее				
Относительное удлинение при	50	50		
разрыве, %, не менее				
Коэффициент теплопроводности в				
сухом состоянии, Вт/(м·°С), не				
более, при температуре:				
0 °C	0,035	0,038		
10 °C	0,037	0,041		
25 °C	0,040	0,044		
50 °C	0,045	0,048		
Расчетный коэффициент	0,035+0,0002 t _{cp} *	0,038+0,0002 t _{cp} *		
теплопроводности в				
теплоизоляционной конструкции,				
Вт/(м·°C)				
Коэффициент сопротивления	3000**	3000**		
диффузии водяного пара (фактор				
μ), не менее				
Коэффициент	0,00029**	0,00029**		
паропроницаемости, мг/(м·ч·Па),				
не более				
Усадка при 70°С, %:				
за 2 ч	0,7	0,7		
за 2 сут.	1,3	1,3		
за 42 сут.	2,0	2,0		
Водопоглощение по объему при	2,0	2,0		
полном погружении в течение 24				
ч, %, не более				
Группа горючести	По п.6.9	По п.6.9		
* t _{cp} - средняя температура теплоизоляционного слоя, °C.				

^{*} t_{ср} - средняя температура теплоизоляционного слоя, °C.

Таблица 6.1

^{**} По данным Заключения «НИИМосстрой» № 2-07/35 от 22.01.04 [3].

^{6.7.1} Физико-технические показатели свойств изделий «Пенофол» должны соответствовать приведенным в таблице 6.1

Наименование	Единица измерения	Пенофол
Температура применения: для типа А	ōС	от –60 до +100
для типа С		от –60 до +60
Коэффициент теплового отражения поверхности, не менее	%	97*
Коэффициент оптического отражения поверхности, не менее	%	90*
Коэффициент теплопроводности,λ, при 20 ºC, не более	Вт/м ºС	
в сухом состоянии — в условиях эксплуатации А — в условиях эксплуатации Б		0,048 - 0,049 0,049 - 0,050 0,050
Коэффициент теплоусвоения (при периоде 24 часа), s	BT/M ² ^Q C	0,44 – 0,48
Коэффициент паропроницаемости, μ, не более	мг/м.ч Па	0,001
Сопротивление теплопередаче, R₀ (в зависимости от толщины)	M ² ºC/BT	1,07 - 1,26
Динамический модуль упругости, Е _д под нагрузкой 2 кПа под нагрузкой 5 кПа	МПа	0,26 - 0,40 0,72 – 0,77
Относительное сжатие, ε _д под нагрузкой 2 кПа под нагрузкой 5 кПа		0,04 - 0,10 0,13 - 0,23
Индекс снижения приведенного уровня ударного шума	дБ	20
Удельная теплоемкость, с₀	кДж/кг	1,95-2,00
Расчетное массовое отношение влаги в материале, w, в условиях эксплуатации: А Б	%	2 2-5

^{6.8} Методы определения физико-технических показателей свойств изделий «Тилит» приведены в ТУ 2244-069-04696843.

Методы определения физико-технических показателей утеплителя «Пенофол» приведены в ТУ 2244-056-04696843-2001

^{6.9} Изделия «Тилит», «Пенофол» в соответствии с ГОСТ 30244 имеют следующие

показатели

- рулоны(листы) «Тилит Супер», рулоны(листы) «Тилит Блэк Стар Дакт», трубки «Тилит Супер», трубки «Тилит Блэк Стар», трубки «Тилит Супер Протект», трубки «Тилит Блэк Стар Сплит», рулоны(листы) «Тилит Супер АЛ», рулоны(листы) «Тилит Блэк Стар Дакт АЛ», «Пенофол» тип А, «Пенофол» тип С - Г1.

По воспламеняемости изделия «Тилит» в соответствии с ГОСТ 30402 относятся к группам:

- трубки «Тилит Супер», «Тилит Супер Протект», «Тилит Блэк Стар Сплит», «Тилит Блэк Стар», рулоны(листы) «Тилит Супер», «Тилит Блэк Стар Дакт» В2;
- рулоны(листы) «Тилит Супер АЛ», «Тилит Блэк Стар Дакт АЛ», «Пенофол» тип А, «Пенофол» тип С, трубки «Тилит Супер» и рулоны(листы) «Тилит Супер» в сочетании с покровным материалом «Армофол ТК» В1.

По дымообразующей способности изделия «Тилит», утеплители «Пенофол» в соответствии с ГОСТ 12.1.044 относятся к группе ДЗ.

Изделия «Тилит», утеплители «Пенофол» не поддерживают самостоятельного горения. Изделия «Тилит», утеплители «Пенофол» в процессе эксплуатации не поглощают вещества, содержащиеся в изолируемом оборудовании и трубопроводах.

- 6.10 Изделия «Тилит», утеплители «Пенофол» не содержат хлорфторуглеводородов и безопасны для окружающей среды.
- 6.11 Изделия «Тилит», утеплители «Пенофол» обладают долговечностью 20-25 лет эксплуатации в диапазоне рабочих температур.
- 6.12 При маркировке изделий очередность слоев облицовок и покрытий в условном обозначении должна соответствовать их очередности в изделии. Первым указывается наружный слой изделия. Условные обозначения определяются производителем.
- 6.13 Код маркировки должен включать в себя следующие обозначения:

Торговая марка	X
Изделие из ППЭ	X
Структура материала с покрытиями и облицовками	X
Размеры изделия:	X
1 11	

- для трубок:

внутренний диаметр, мм × толщина стенки, мм - длина трубки, м;

Пример условного обозначения теплоизоляционного изделия из ППЭ в виде трубки торговой марки «Тилит» с внутренним диаметром 18 мм, толщиной стенки 9 мм, длиной 2 м, группой горючести Г1, максимальной рабочей температурой 95°С, минимальной рабочей температурой -80°С, декларируемой теплопроводностью при 10°С 0,042 Вт/м.°С и при 25°С 0,046 Вт/м.°С, с паропроницаемостью 0,1, декларируемый уровень водопоглощения ≤ 0,05, название компании-изготовителя ЗАО «Завод ЛИТ»:

7. Требования к покровным материалам и изделиям

7.1. Гибкий покровный материал «Армофол ТК»

- 7.1.1 Гибкий покровный материал «Армофол ТК» по ТУ 1811-081-04696843-2005 применяют для защиты теплоизоляционного слоя из изделий «Тилит» от ультрафиолетового излучения и механических повреждений.
- 7.1.2 Материал «Армофол ТК» изготавливают из высокопрочной стеклоткани, покрытой алюминиевой фольгой, в виде рулонов шириной 1000 мм и длиной 25 м, 50 м. Материал «Армофол ТК» может быть в простом и самоклеящемся исполнении. Материал в самоклеящемся исполнении должен быть покрыт с обратной стороны фольгированной поверхности материала клеевым слоем, защищенным антиадгезионным материалом.
- 7.1.3 Материал «Армофол ТК» применяют в качестве покровного слоя в теплоизоляционных конструкциях для оборудования и трубопроводов, расположенных в помещениях, тоннелях, каналах и на открытом воздухе, а также оборудования и трубопроводов тепловых сетей систем отопления, горячего и холодного водоснабжения, вентиляции и кондиционирования воздуха.
- 7.1.4 Показатели свойств материала «Армофол ТК» приведены в таблице 7.

Таблица 7

Наименование показателя	Значение
Толщина фольги, мкм	11
Температурные пределы применения, °С	От минус 40 до + 100
Группа горючести (по ГОСТ 30244)	Γ1
Прочность сцепления алюминиевой фольги с основой, Н/м, не	100 (или превышает
менее	прочность фольги)
Адгезия клеевого слоя к металлической поверхности (для	300
материала «Армофол ТК» в самоклеящемся исполнении), Н/м, не	
менее	
Разрывная нагрузка, кгс, не менее	1000

7.1.5 Методы определения показателей свойств материала «Армофол ТК» приведены в ТУ 1811-081-04696843-2005

7.2 Гибкий покровный материал «ТИТАНФЛЕКС»

7.2.1 Гибкий покровный материал «ТИТАНФЛЕКС» по ТУ 2245-095-04696843-2012 сизм. №1, 2 СТО 04696843-001-2015 Технические условия, применяют для защиты теплоизоляционного слоя из изделий «Тилит» от атмосферных воздействий и механических повреждений.

Материал «ТИТАНФЛЕКС» изготавливают из алюминиевой фольги, защищенной с обеих сторон слоями высокоустойчивого к механическим воздействиям, ультрафиолетовому излучению и агрессивным средам полимера. «ТИТАНФЛЕКС» выпускается виде рулонов шириной 600, 1200 с предельным отклонением ± 5мм и длиной 25, 50, 100 м с предельными отклонениями +1%.

Материал «ТИТАНФЛЕКС» может быть в простом и самоклеящемся исполнении. Материал в самоклеящемся исполнении должен быть покрыт с одной стороны клеевым слоем, защищенным антиадгезионным материалом.

7.2.2 Материал «ТИТАНФЛЕКС» применяют в качестве покровного слоя в

теплоизоляционных конструкциях для оборудования и трубопроводов, расположенных в помещениях, тоннелях, каналах и на открытом воздухе, а также оборудования и трубопроводов тепловых сетей систем отопления, горячего и холодного водоснабжения, вентиляции и кондиционирования воздуха.

7.2.3 Показатели свойств материала «ТИТАНФЛЕКС» приведены в таблице 8. *Таблица 8*

Наименование показателя	Значение
Толщина материалов, мкм	(250 - 800) ± 10 %
Температурные пределы применения, без клеевого слоя°С	От минус 60 до + 70
Температурные пределы применения, с клеевым слоем°С	От минус 30 до + 70
Группа горючести (ГОСТ 30244)	Γ1
Прочность сцепления алюминиевой фольги с основой, Н/м, не	100 (или превышает
менее	прочность фольги)
Адгезия клеевого слоя к металлической поверхности (для	600
материала «ТИТАНФЛЕКС» в самоклеящемся исполнении), H/м, не	
менее	
Разрывная нагрузка в продольном направлении, МПА, не менее	30
Разрывная нагрузка в поперечном направлении, МПА, не менее	25

^{7.2.4} Методы определения показателей свойств материала «ТИТАНФЛЕКС» приведены в ТУ 2245-095-04696843-2012 с изм. №1, 2 и СТО 04696843-001-2015 Технические условия.

7.3 Чехлы энергосберегающие «Тилит»

2010.

- 7.3.1 Чехол энергосберегающий «Тилит» (далее термочехлы «Тилит») ТУ 2291-093-04696843-2010, предназначен для многоразовой изоляции запорной арматуры и других фигурных элементов систем отопления и трубопроводов. Термочехлы «Тилит» изготавливаются из материалов комбинированных теплоизоляционных.
- 7.3.2 Термочехлы «Тилит» предназначены для эксплуатации внутри помещений, а также на открытом воздухе, в диапазоне температур окружающего воздуха от 40 °C до + 120 °C, относительной влажности воздуха до 100% при температуре изолируемой поверхности от -40 °C до + 100 °C.
- 7.3.3 Для изоляции запорной арматуры применяют Термочехлы марки «Тилит-Н», они изготавливаются двух вариантов исполнения:
 - исполнение 1 с двумя слоями теплоизоляционного материала,
 - исполнение 2 с одним слоем теплоизоляционного материала.

Условное обозначение термочехла Тилит-Н должно содержать марку, назначение, вариант исполнения, номер настоящих технических условий, например:

Термочехол «Тилит-Н» для задвижки Ду 100, исп.1, ТУ 2291-093-04696843-

- 7.3.4 Термочехлы «Тилит-Н» должны быть изготовлены из многослойного материала следующего состава: пленка полимерная металлизированная, клей, полотно объемное теплоизоляционное, клей, пленка полимерная металлизированная.
- В качестве скрепляющих элементов могут быть использованы различные застежки, ремни, шнуры и др. Отверстия под шнуры должны быть окантованы металлическим кольцом (люверсом).
- 7.3.5 Термочехлы «Тилит» нетоксичны. Использование их не требует мер предосторожности. Термочехлы «Тилит» не взрывоопасны.
- 7.3.6 Показатели свойств материала термочехлы «Тилит» приведены в таблице 9.

40714443		
Наименование показателя	Ед. изм.	Значение
1. Температура эксплуатации	°C	от - 40 до + 120
2. Условный диаметр арматуры (или по эскизам заказчика)	мм	15 — 300
3. Характеристика комбинированного многослойного материала — основы термочехлов (ТУ 2245-079-04696843-2010):		
3.1. Bec	г/м²	200 - 1000
3.2. Толщина	MM	10 - 60
3.3. Разрывная нагрузка в продольном и поперечном направлениях, не менее	н	80
3.4. Относительное удлинение при разрыве, не менее	%	100
3.5. Сопротивление расслаиванию между слоями материала, не менее	Н/м	50
3.6. Коэффициент теплопроводности λ, — в сухом состоянии — в условиях эксплуатации А — в условиях эксплуатации Б	Вт/(м·°С)	0,039 0,040 0,041
3.7. Коэффициент теплового отражения	%	80

7.3.7 Перечень термочехлов для задвижек по ГОСТ 9698 приведены в таблице 10 *Таблица* 10

Наименование	Габариты чехла		
Ду 50 — Ду 80	620 х 990 мм		
Ду 100 — Ду 125	830 x 1280 mm		
Ду 150	950 x 1460 mm		
Ду 200	1180 x 1810 mm		
Ду 250	1460 x 2240 mm		
Ду 300	1690 x 2590 mm		

- 7.3.8 Методы определения показателей свойств материалов термочехлы «Тилит» приведены в ТУ 2291-093-04696843-2010
- 8. Требования к аксессуарам для монтажа «Тилит», «Пенофол»
- **8.1 Клей «Тилит»** применяют для соединения швов тепловой изоляции, покровного

материла и приклейки теплоизоляционных изделий к изолируемой поверхности. Клей «Тилит» применяют в виде раствора, расфасованного в металлические банки объемом 0,7 и 1,7 литра.

8.1.1 Температура хранения: +15°C до +25°C Температура применения: + 5°C до +40°C

8.1.2 Примерный расход 1 литра клея «Тилит» приведен в таблице 11.

Таблица 11

Наименование продукции	Значение
Трубки толщиной 6 мм	240-300 п.м.
Трубки толщиной 9 мм	160-200 п.м.
Трубки толщиной 13 мм	110-140 п.м.
Трубки толщиной 20 мм	70-90 п.м.
Рулоны и листы	5 m2

8.1.3 Методы определения показателей свойств клея «Тилит» приведены в ТУ РБ 101199391.005-2004

8.2 Лента армированная самоклеящаяся «Тилит»

- 8.2.1 Лента полиэтиленовая самоклеящаяся «Тилит» по ТУ 2245-047-04696843-97 применяется при монтаже рулонных и трубных материалов марки «Тилит» для соединения швов изоляции. Благодаря армирующей сетке лента обладает повышенной прочностью. Выпускается в двух цветах: серый, черный.
- 8.2.2 Характеристики ленты полиэтиленовой самоклеящейся «Тилит» представлены в таблице 12.

Таблица 12

Характеристика	Значение
Ширина, м	48
Длина, м	10, 25, 50
Температура монтажа,°С, не ниже	5
Примерный расход	1,15-1,45 длины прямых участков
	трубопровода 26 м на 10 м² изолируемой
	поверхности

8.2.3 Ассортимент и упаковка ленты полиэтиленовой самоклеящейся «Тилит» представлены в таблице 13.

Наименование	Вид упаковки	Количество в	Вес брутто, кг	Объем
		упаковке, шт.		упаковки, м ³
Лента п/э	Картонная	36	14,76	0,36

клеевая	коробка		
армированная			
«Тилит» серая,			
черная			

8.2.4 Методы определения показателей свойств ленты полиэтиленовой клеевая армированная «Тилит» приведены в ТУ 2245-047-04696843-97

8.3 Лента алюминиевая самоклеящаяся «ЛАС»

- 8.3.1 Лента алюминиевая самоклеящаяся «ЛАС» по ТУ 1811-054-04696843-2012 с антиадгезионным покрытием применяется при монтаже фольгированных материалов «ТИЛИТ» для изоляции стыков между полотнами теплоизоляционного материала. Лента алюминиевая самоклеящаяся ЛАС при проклеивании швов не скручивается.
- 8.3.2 Характеристики ленты алюминиевой самоклеящейся «ЛАС» представлены в таблице 14.

Таблица 14

Характеристика	Значение
Ширина, м	От 20 до 1200
Длина, м	50
Толщина фольги, мкм	от 30
Разрывная нагрузка в продольном	70
направлении*, Н/50 мм, не менее	
Температура монтажа, °С, не ниже	10
Адгезия к стальной пластине, г/см	500
не менее	

8.3.3 При изготовлении ленты алюминиевой самоклеящейся «ЛАС», предназначенной для использования в качестве аксессуара теплоизоляционных изделий из пенополиэтилена «Тилит» к наименованию добавляется запись «Тилит», например:

Лента ЛАС Тилит 30 мкм x 50 мм x 50 м, ТУ 1811-054-04696843-2012

8.3.4 Методы определения показателей свойств ленты алюминиевой самоклеящейся «ЛАС» приведены в ТУ 1811-054-04696843-2012

8.4 Лента алюминиевая самоклеящаяся армированная «ЛАС-А»

- 8.4.1 Лента алюминиевая самоклеящаяся армированная «ЛАС-А» по ТУ 1811-054-04696843-2012 применяется при монтаже материалов «Армофол ТК», для изоляции стыков теплоизоляционных плит из фольгированных материалов марки «Тилит» и монтажа их к металлическим или пластиковым поверхностям в условиях повышенных требований к прочности швов.
- 8.4.2 Характеристики ленты алюминиевой самоклеящейся армированной «ЛАС-А» представлены в таблице 15

Характеристика	Значение
Ширина, м	От 20 до 1200
Длина, м	50, 100
Разрывная нагрузка в продольном	100
направлении*, Н/50 мм, не менее	

Температура монтажа °С, не ниже	10
Адгезия к стальной пластине, г/см	500
не менее	

8.4.3 Методы определения показателей свойств ленты алюминиевой самоклеящейся армированной «ЛАС-А» приведены в ТУ 1811-054-04696843-2012

8.5 Лента алюминиевая самоклеящаяся прочная «ЛАС-П»

- 8.5.1 Лента алюминиевая самоклеящаяся «ЛАС-П» по ТУ 1811-054-04696843-2012 предназначена для изоляции стыков материала «ТИТАНФЛЕКС», для изоляции стыков теплоизоляционных плит из фольгированных материалов марки «Тилит» и монтажа их к металлическим или пластиковым поверхностям в условиях повышенных требований к прочности швов.
- 8.5.2 Характеристики ленты алюминиевой самоклеящейся прочной «ЛАС-П» представлены в таблице 16

Таблица 16

Характеристика	Значение
Ширина, м	От 20 до 1200
Длина, м	50, 100
Разрывная нагрузка в продольном	300
направлении*, Н/50 мм, не менее	
Температура монтажа, °С, не ниже	10
Адгезия к стальной пластине, г/см	500
не менее	

8.5.3 Методы определения показателей свойств ленты алюминиевой самоклеящейся прочной «ЛАС-П» приведены в ТУ 1811-054-04696843-2012

8.6 Лента самоклеящаяся «Тилит Супер СК», «Тилит Блэк Стар СК»

- 8.6.1 Лента самоклеящаяся «Тилит Супер СК» из вспененного полиэтилена серого цвета по ТУ 2244-069-04696843-2003 обладает низким коэффициентом теплопроводности и предназначена для изоляции фитингов, арматуры и труднодоступных участков трубопроводов в системах отопления и водоснабжения, а также для уплотнения различных соединений.
- 8.6.2 Лента самоклеящаяся «Тилит Блэк Стар СК» из вспененного полиэтилена черного цвета по ТУ 2244-069-04696843-2003 обладает низким коэффициентом теплопроводности и предназначена для уплотнения фланцев воздуховодов и других соединений.
- 8.6.3 Характеристики ленты самоклеящейся «Тилит Супер СК» и «Тилит Блэк Стар СК» представлены в таблице 17

Характеристика	Тилит Супер СК	Тилит Блэк Стар СК
Толщина, мм	3	5
Ширина, мм	15,50	15
Длина, м	15	10
Температура приклеивания, °С, не ниже	10	10

Диапазон рабочих температур, °С, не ниже	От – 40 до + 95	От – 40 до + 95

8.6.4 Ассортимент и упаковка ленты самоклеящейся «Тилит Супер СК» и «Тилит Блэк Стар СК» представлены в таблице 18.

Таблица 18

Наименование	Вид	Количество в	Вес брутто, кг	Объем
	упаковки	упаковке, шт.		упаковки, м ³
Супер СК	Картонная	100	5,00	0,110
3мм/0,015м-15м	коробка			
Супер СК 3мм/0,05м-	Картонная	300	6,45	0,110
15м	коробка			
Блэк Стар СК	Картонная	13	17,75	0,350
5мм/0,015-10(5	коробка			
роликов)				

8.6.5 Методы определения показателей свойств ленты самоклеящейся «Тилит Супер СК» и «Тилит Блэк Стар СК» приведены в ТУ 2244-069-04696843-2003

8.7 Заклепки металлические.

8.7.1 Заклепки металлические должны соответствовать ГОСТ Р ИСО 15974-2005

8.8 Зажимы «Тилит»

- 8.8.1 Пластиковые зажимы «Тилит» используются для временной фиксации трубной изоляции после склеивания.
- 8.8.2 Расход зажимов 3 штуки на 1 погонный метр изоляции. Количество в упаковке 100 штук.
- 8.8.3 Упаковка зажимов «Тилит» представлены в таблице 19.

Таблица 19

Наименование	Вид	Количество в	Вес брутто, кг	Объем
	упаковки	упаковке, шт.		упаковки, м ³
Зажимы Тилит	Картонная коробка	1000	5,7	0,019
Зажимы Тилит	П/Э	100	0,6	0,002
	упаковка			

- 9. Проектирование тепловой изоляции с применением изделий «Тилит», «Пенофол».
 - 9.1. Определение толщины теплоизоляционного слоя изделий «Тилит», «Пенофол» по нормированной плотности теплового потока

Данная задача рассчитывается с помощью программы «LIT THERMO ENGINEER. Инженерные коммуникации.» Программа прошла государственную регистрацию программ для ЭВМ, получен сертификат соответствия СП61.13330.2012 «Тепловая изоляция оборудования и трубопроводов. Актуализированная редакция СНиП 41-03-2003» в Центре Сертификации Программных Средств в строительстве и рекомендована к применению.

Загрузить программу можно по ссылке http://zavodlit.ru/. Программа распространяется как бесплатное (Freeware) приложение (в том числе и в качестве Библиотеки КОМПАС 3D)**

9.1.1. Нормы плотности теплового потока через изолированную поверхность объектов, расположенных в Европейском регионе России, следует принимать:

для оборудования и трубопроводов с положительными температурами, расположенных:

на открытом воздухе - по таблицам 20 и 21;

в помещении - по таблице 22 и 23;

для оборудования и трубопроводов с отрицательными температурами, расположенных:

на открытом воздухе - по таблице 24;

в помещении - по таблице 25;

при прокладке в непроходных каналах:

для трубопроводов двухтрубных водяных тепловых сетей - по таблицам 26 и 27;

для паропроводов с конденсатопроводами при их совместной прокладке в непроходных каналах - по таблице 28;

для трубопроводов двухтрубных водяных тепловых сетей при бесканальной прокладке — по таблице 29, 30.

Таблица 20

Нормы плотности теплового потока оборудования и трубопроводов с положительными температурами при расположении на открытом воздухе и числе часов работы более 5000

Условный проход		Температура теплоносителя, °С													
трубо- провода, мм	20	50	100	150	200	250	300	350	400	450	500	550	600		
MM			П.	лотнос	гь теп	лового	поток	a, Bт/	М		•	•	<u>'</u>		
15	4	9	17	25	35	45	56	68	81	94	109	124	140		
20	4	10	19	28	39	50	62	75	89	103	119	135	152		
25	5	11	20	31	42	54	67	81	95	111	128	145	163		
40	5	12	23	35	47	60	75	90	106	123	142	161	181		
50	6	14	26	38	51	66	81	98	115	133	153	173	195		
65	7	16	29	43	58	74	90	108	127	147	169	191	214		
80	8	17	31	46	62	78	96	115	135	156	179	202	226		
100	9	19	34	50	67	85	104	124	146	168	192	217	243		
125	10	21	38	55	74	93	114	136	159	183	208	235	263		
150	11	23	42	61	80	101	132	156	182	209	238	267	298		
200	14	28	50	72	95	119	154	182	212	242	274	308	343		
250	16	33	57	82	107	133	173	204	236	270	305	342	380		

300	18	37	64	91	118	147	191	224	259	296	333	373	414
350	22	45	77	108	140	173	208	244	281	320	361	403	446
400	25	49	8 4	117	152	187	223	262	301	343	385	430	476
450	27	54	91	127	163	200	239	280	322	365	410	457	505
500	30	58	98	136	175	215	256	299	343	389	436	486	537
600	34	67	112	154	197	241	286	333	382	432	484	537	593
700	38	75	124	170	217	264	313	364	416	470	526	583	642
800	43	83	137	188	238	290	343	397	453	511	571	633	696
900	47	91	150	205	259	315	372	430	490	552	616	681	749
1000	52	100	163	222	281	340	400	463	527	592	660	729	801
1400	70	133	215	291	364	439	514	591	670	750	833	918	1098
Более 1400 и		•	Пл	OTHOCT	ь тепл	ового 1	потока	, Вт/м2	2		•		
плоские поверх- ности	15	27	41	54	66	77	89	100	110	134	153	174	192
Примечание. Промежуточные значения норм плотности теплового потока следует определять интерполяцией.													

Нормы плотности теплового потока оборудования и трубопроводов с положительными температурами при расположении на открытом воздухе и числе часов работы 5000 и менее

Условный проход		Температура теплоносителя, °С														
трубо- провода, мм	20	50	100	150	200	250	300	350	400	450	500	550	600			
MM		•	Π.	лотнос	гь теп	лового	поток	а , Вт/і	M							
15	4	10	18	28	38	49	61	74	87	102	117	133	150			
20	5	11	21	31	42	54	67	81	96	112	128	146	164			
25	5	12	23	34	46	59	73	88	104	120	138	157	176			
40	6	14	26	39	52	67	82	99	116	135	154	174	196			
50	7	16	29	43	57	73	90	107	126	146	167	189	212			
65	8	18	33	48	65	82	100	120	141	162	185	209	234			
80	9	20	36	52	69	88	107	128	150	172	197	222	248			
100	10	22	39	57	76	96	116	139	162	187	212	239	267			
125	12	25	44	63	84	113	137	162	189	216	245	276	307			

150	13	27	48	70	92	123	149	176	205	235	266	298	332
200	16	34	59	83	109	146	176	207	240	274	310	347	385
250	19	39	67	95	124	166	199	234	270	307	346	387	429
300	22	4 4	76	106	138	184	220	258	297	338	380	424	469
350	27	54	92	128	164	202	241	282	324	368	413	460	508
400	30	60	100	139	178	219	260	304	349	395	443	493	544
450	33	65	109	150	192	235	280	326	373	422	473	526	580
500	36	71	118	162	207	253	300	349	399	451	505	561	618
600	42	82	135	185	235	285	338	391	447	504	563	624	686
700	47	91	150	204	259	314	371	429	489	551	614	679	746
800	53	102	166	226	286	346	407	470	535	602	670	740	812
900	59	112	183	248	312	377	443	511	581	652	725	800	877
1000	64	123	199	269	339	408	479	552	626	702	780	860	941
1400	87	165	264	355	444	532	621	712	804	898	995	1092	1193
Более 1400 и			Пл	OTHOCT	ь тепл	ового 1	потока	, Вт/м	2		I		
плоские поверх- ности	19	35	54	70	85	99	112	125	141	158	174	191	205
-	Примечание. Промежуточные значения норм плотности теплового потока следует определять интерполяцией.												

Нормы плотности теплового потока для оборудования и трубопроводов с положительными температурами при расположении в помещении и числе часов работы более 5000

Условный проход		Температура теплоносителя, $^{\circ}$ С														
трубо- провода, мм	50	100	150	200	250	300	350	400	450	500	550	600				
MIN			Π.	лотнос	гь теп.	лового	потока	а, Вт/м								
15	6	14	23	33	43	54	66	79	93	107	122	138				
20	7	16	26	37	48	60	73	87	102	117	134	151				
25	8	18	28	40	52	65	79	94	110	126	144	162				
40	9	21	32	45	59	73	89	105	122	141	160	180				
50	10	23	36	50	64	80	96	114	133	152	173	194				
65	12	26	41	56	72	89	107	127	147	169	191	214				
80	13	28	44	60	77	95	114	135	156	179	202	227				
100	14	31	48	65	84	103	124	146	169	193	218	244				

125	16	35	53	72	92	113	136	159	184	210	237	265	
-									_				
150	18	38	58	79	100	123	147	172	199	226	255	285	
200	22	46	70	93	118	144	172	200	230	262	294	328	
250	26	53	79	106	134	162	193	224	257	291	327	364	
300	29	60	88	118	148	179	212	246	281	318	357	396	
350	33	66	97	129	161	195	230	267	305	344	385	428	
400	36	72	106	139	174	210	247	286	326	368	411	456	
450	39	78	114	150	187	225	264	305	348	392	437	484	
500	43	8 4	123	161	200	241	282	326	370	417	465	514	
600	49	96	139	181	225	269	315	363	412	462	515	569	
700	55	107	153	200	247	295	344	395	448	502	558	616	
800	61	118	169	220	270	322	376	431	487	546	606	668	
900	67	130	185	239	294	350	407	466	527	589	653	718	
1000	74	141	201	259	318	377	438	501	565	631	699	768	
1400	99	187	263	337	411	485	561	638	716	797	880	964	
Более 1400 и	Плотность теплового потока, Вт/м2												
плоские поверх- ности	23	41	56	69	82	94	106	118	130	141	153	165	
_	Примечание. Промежуточные значения норм плотности теплового потока следует определять интерполяцией.												

Нормы плотности теплового потока для оборудования и трубопроводов с положительными температурами при расположении в помещении и числе часов работы 5000 и менее

Условный проход		Температура теплоносителя, °С														
трубо- провода, мм	50	100	150	200	250	300	350	400	450	500	550	600				
		Плотность теплового потока, Вт/м														
15	6	16 25 35 46 58 71 85 99 114 130 147														
20	7	18	28	40	52	65	79	93	109	126	143	161				
25	8	20	31	43	56	70	85	101	118	136	154	174				
40	10	23	36	49	64	80	96	114	132	152	172	194				
50	11	25	40	54	70	87	105	124	144	165	187	210				
65	13	29	45	62	79	98	118	139	161	184	208	233				

80	14	32	49	66	85	105	126	148	171	195	221	247
100	16	35	54	73	93	115	137	161	186	212	239	267
125	18	39	60	81	103	126	151	176	203	231	261	291
150	21	44	66	89	113	138	164	192	221	251	282	315
200	26	53	80	107	134	163	194	225	258	292	328	365
250	30	62	92	122	153	185	218	253	290	327	366	407
300	34	70	103	136	170	205	241	279	319	359	402	446
350	38	77	113	149	186	224	263	304	347	391	436	483
400	42	85	123	162	201	242	284	328	373	419	467	517
450	46	92	134	175	217	260	305	351	398	448	498	551
500	51	100	144	189	233	279	327	375	426	478	532	587
600	58	114	164	214	263	314	367	420	476	533	592	652
700	65	127	182	236	290	345	402	460	520	582	645	710
800	73	141	202	261	320	379	441	504	568	635	703	772
900	81	156	221	285	349	413	479	547	616	687	760	834
1000	89	170	241	309	378	447	518	590	663	739	816	896
1400	120	226	318	406	492	580	668	758	850	943	1038	1136
Более 1400 и			Пл	отност	ь тепл	ОВОГО	потока	, Вт/м2				
плоские поверх- ности	26	46	63	78	92	105	119	132	145	158	171	190
	Примечание. Промежуточные значения норм плотности теплового потока следует определять интерполяцией.											

Нормы плотности теплового потока для оборудования и трубопроводов с отрицательными температурами при расположении на открытом воздухе

Условный проход		Температура теплоносителя, °С														
трубо- провода, мм	0	-10	-20	-40	-60	-80	-100	-120	-140	-160	-180					
MINI		Плотность теплового потока, Вт/м														
20	3	·														
25	3	4	5	6	8	9	11	12	15	17	18					
40	4	5	5	7	9	10	12	13	16	18	19					
50	5	5	6	8	9	11	13	14	16	19	20					
65	6	6	7	9	10	12	14	15	17	20	21					

80	6	6	8	10	11	13	15	16	18	21	22	
100	7	7	9	11	13	14	17	18	20	22	23	
125	8	8	9	12	14	16	18	20	21	23	25	
150	8	9	10	13	16	17	20	21	23	25	27	
200	10	10	12	16	18	20	23	25	27	29	31	
250	11	12	14	18	20	23	26	27	30	33	35	
300	12	13	16	20	23	25	28	30	34	36	39	
350	14	15	18	22	24	27	30	33	36	38	41	
400	16	16	20	23	26	29	32	34	38	40	43	
450	17	18	21	26	28	31	34	37	39	42	45	
500	19	21	23	27	30	33	36	38	41	44	46	
Более 500	Плотность теплового потока, Вт/м2											
11 12 12 13 14 15 15 16 17 18 19												
Примечание. Промежуточные значения норм плотности теплового потока следует определять интерполяцией.												

Таблица 25

Нормы плотности теплового потока для оборудования и трубопроводов с отрицательными температурами при расположении в помещении

Условный проход трубо- провода, мм	Температура теплоносителя, °С										
	0	-10	-20	-40	-60	-80	-100	-120	-140	-160	-180
	Плотность теплового потока, Вт/м										
20	5	6	6	7	8	9	10	10	11	13	14
25	6	7	7	8	9	10	11	14	16	17	20
40	7	7	8	9	11	12	13	16	17	19	21
50	7	8	9	10	12	13	15	17	19	20	22
65	8	9	9	11	13	14	16	18	20	21	23
80	9	9	10	12	13	15	17	19	20	22	24
100	10	10	11	13	14	16	18	20	21	23	25
125	11	11	12	14	16	18	20	21	23	26	27
150	12	13	13	16	17	20	21	23	25	27	30
200	15	16	16	19	21	23	25	27	30	31	34
250	16	17	19	20	23	26	27	30	33	36	38
300	19	20	21	23	26	29	31	34	37	39	41
350	21	22	23	26	29	31	34	36	38	41	44
400	23	24	26	28	30	34	36	38	41	44	46
450	25	27	28	30	33	35	37	40	42	45	48

500	28	29	30	33	35	37	40	42	45	47	49
Более 500	Плотность теплового потока, Вт/м2										
	15	16	17	18	19	19	20	21	22	22	23
Примечание. Промежуточные значения норм плотности теплового потока следует определять интерполяцией.											

Нормы плотности теплового потока через поверхность изоляции трубопроводов двухтрубных водяных сетей при подземной канальной прокладке

Таблица 26

Нормы плотности теплового потока для трубопроводов двухтрубных водяных сетей при подземной канальной прокладке и продолжительности работы в год более 5000 ч

Условный проход	Среднегодовая температура теплоносителя (подающий/обратный), $^{\circ}$ С								
трубо- провода, мм	65/50	90/50	110/50						
MIM	Суммарная линейн	ая плотность теплового	потока, Вт/м						
25	19	24	28						
32	21	26	30						
40	22	28	32						
50	25	30	35						
65	29	35	40						
80	31	37	43						
100	34	40	46						
125	39	46	52						
150	42	50	57						
200	52	61	70						
250	60	71	80						
300	67	79	90						
350	75	88	99						
400	81	96	108						
450	89	104	117						
500	96	113	127						
600	111	129	145						
700	123	144	160						
800	137	160	177						
900	151	176	197						

1000	166	192	212
1200	195	225	250
1400	221	256	283

Примечания. 1. Расчетные среднегодовые температуры воды в водяных тепловых сетях 65/50, 90/50 и 110/50 °C соответствуют температурным графикам 95 – 70, 150 – 70 и 180 – 70 °C.

2. Промежуточные значения норм плотности теплового потока следует определять интерполяцией.

Таблица 27

Нормы плотности теплового потока для трубопроводов двухтрубных водяных сетей при подземной канальной прокладке и продолжительности работы в год 5000 ч и менее

Условный проход	Среднегодовая температ	ура теплоносителя (под	дающий/обратный), °С
трубо- провода, мм	65/50	90/50	110/50
MM	Суммарная линейн	ая плотность теплового	о потока, Вт/м
25	21	26	31
32	24	29	33
40	25	31	35
50	29	34	39
65	32	39	45
80	35	42	48
100	39	47	53
125	44	53	60
150	49	59	66
200	60	71	81
250	71	83	94
300	81	94	105
350	89	105	118
400	98	115	128
450	107	125	140
500	118	137	152
600	134	156	174
700	151	175	194
800	168	195	216
900	186	216	239
1000	203	234	261
1200	239	277	305

CTO 04696843-004-2015

1400	273	273 316	
Приме	чание. См. примечание в	к таблице 26.	

Нормы плотности теплового потока через поверхность изоляции паропроводов с конденсатопроводами при их совместной прокладке в непроходных каналах

Усло ный прох труб пров	од о- о-	Паро- про- вод	Конде н- сато- прово д	Паро- про- вод	Конде н- сато- прово д	Паро- про- вод	Конде н- сато- прово д	про-	Конде н- сато- прово д	Паро- про- вод	Конде н- сато- прово д	- про-	Конде н- сато- прово д
дов,	MM				P	асчетн	ая тем	перату	ра тег	ілоноси	теля,	°C	
		115	100	150	100	200	100	250	100	300	100	350	100
25	25	22	18	30	18	41	18	51	18	64	18	79	18
32	25	23	18	32	18	43	18	54	18	69	18	83	18
40	25	25	18	33	18	45	18	58	18	73	18	88	18
50	25	27	18	36	18	52	18	64	18	79	18	95	18
65	32	31	21	43	21	58	21	71	21	88	20	103	20
80	40	35	23	46	23	62	23	81	22	98	22	117	21
100	40	38	23	49	23	66	23	81	22	98	22	117	21
125	50	42	24	53	24	72	24	88	23	107	23	126	23
150	65	45	27	58	27	78	27	94	26	115	26	142	26
200	80	52	27	68	27	89	27	108	28	131	28	153	28
250	100	58	31	75	31	99	31	119	31	147	31	172	31
300	125	64	33	83	33	110	33	133	33	159	33	186	33
350	150	70	38	90	38	118	38	143	37	171	37	200	34
400	180	75	42	96	42	127	42	153	41	183	41	213	41
450	200	81	44	103	44	134	44	162	44	193	43	224	43
500	250	86	50	110	50	143	50	173	49	207	49	239	48
600	300	97	55	123	55	159	55	190	54	227	54	261	53
700	300	105	55	133	55	172	55	203	54	243	53	280	53
800	300	114	55	143	55	185	55	220	54	-	-	_	_
	Примечание. Промежуточные значения норм плотности теплового потока следует определять интерполяцией.												

Нормы плотности теплового потока для толстостенных металлических трубопроводов следует принимать по условному диаметру, соответствующему стандартным трубам того же наружного

диаметра.

При проектировании тепловой изоляции для технологических трубопроводов, прокладываемых в каналах и бесканально, нормы плотности теплового потока следует принимать как для трубопроводов, прокладываемых на открытом воздухе.

9.1.2. При расположении изолируемых объектов в других регионах страны следует учитывать изменение стоимости теплоты в зависимости от района строительства и способа прокладки трубопровода (места установки оборудования):

нормы плотности теплового потока для плоской и цилиндрической поверхностей с условным проходом более 1400 мм, q^{reg} , определяются по формуле

$$q^{reg} = qK$$
 , (1)

нормы плотности теплового потока для цилиндрической поверхности с условным проходом 1400 мм и менее, $q_l^{\it reg}$, определяются по формуле

$$q_1^{reg} = q_1 K$$
, (2)

где q - нормированная поверхностная плотность теплового по тока, Вт/м2, принимаемая по таблицам 20 - 25;

 q_l - нормированная линейная плотность теплового потока (на 1 м длины цилиндрического объекта), Вт/м, принимаемая по таблицам 20 - 28;

К - коэффициент, учитывающий изменение стоимости теплоты и теплоизоляционной конструкции в зависимости от района строительства и способа прокладки трубопровода (места установки оборудования) (см. таблицу 29).

Таблица 29

Район строительства	Коэффициент К						
	Способ прокладки трубопроводов и месторасположение оборудования						
	на открытом в помещении, воздухе тоннеле		в непроход- ном канале	бесканаль- ный			
Европейская часть России	1,0	1,0	1,0	1,0			
Урал	0,98	0,98	0,95	0,94			
Западная Сибирь	0,98	0,98	0,95	0,94			
Восточная Сибирь	0,98	0,98	0,95	0,94			
Дальний Восток	0,96	0,96	0,92	0,9			
Районы Крайнего Севера и приравненные к ним местности	0,96	0,96	0,92	0,9			

9.1.3. Расчетные характеристики теплоизоляционных материалов и изделий, применяемых для изоляции оборудования и трубопроводов надземной и подземной прокладок следует принимать с учетом плотности в конструкции, влажности в условиях эксплуатации, швов и влияния мостиков холода элементов крепления.

Коэффициент теплопроводности уплотняющихся материалов при оптимальной плотности в конструкции следует принимать по данным сертификационных испытаний или по данным, приведенным в справочном Приложении Б. (СП 61.13330.2012 «СНиП 41-03-2003 Тепловая изоляция оборудования и трубопроводов»)

9.1.4. При бесканальной прокладке трубопроводов теплопроводность основного слоя теплоизоляционной конструкции, λ_{ι} , определяется по формуле

$$\lambda_{k} = \lambda_{0} K$$
 , (3)

где λ_0 - теплопроводность сухого материала основного слоя, Bt/(м x K);

К - коэффициент, учитывающий увеличение теплопроводности от увлажнения, принимаемый в зависимости от вида теплоизоляционного материала и типа грунта по таблице 30.

Таблица 30

Материал теплоизоляционного слоя	Коэффициент увлажнения К					
	Тип грунта по ГОСТ 25100					
	маловлажный	влажный	насыщенный водой			
Пенополиуретан	1,0	1,0	1,0			
Армопенобетон	1,05	1,05	1,1			
Пенополимерминерал	1,05	1,05	1,1			

- 9.1.5. За расчетную температуру окружающей среды при расчетах по нормированной плотности теплового потока следует принимать:
- а) для изолируемых поверхностей, расположенных на открытом воздухе:

для технологического оборудования и трубопроводов - среднюю за год;

для трубопроводов тепловых сетей при круглогодичной работе - среднюю за год;

для трубопроводов тепловых сетей, работающих только в отопительный период, - среднюю за период со среднесуточной температурой наружного воздуха 8°С и ниже;

- б) для изолируемых поверхностей, расположенных в помещении, 20 °C;
- в) для трубопроводов, расположенных в тоннелях, 40 °C;
- г) для подземной прокладки в каналах или при бесканальной прокладке трубопроводов среднюю за год температуру грунта на глубине заложения оси трубопровода. При величине заглубления верхней части перекрытия канала (при прокладке в каналах) или верха теплоизоляционной конструкции трубопровода (при бесканальной прокладке) 0,7 м и менее за расчетную температуру окружающей среды должна приниматься та же температура наружного воздуха, что и при надземной прокладке.
- 9.1.6. Температуру теплоносителя технологического оборудования и трубопроводов при расчетах по нормированной плотности теплового потока следует принимать в соответствии с заданием на проектирование.

Для трубопроводов тепловых сетей за расчетную температуру теплоносителя принимают:

а) для водяных тепловых сетей:

для подающего трубопровода при постоянной температуре сетевой воды и количественном регулировании - максимальную температуру теплоносителя;

для подающего трубопровода при переменной температуре сетевой воды и качественном регулировании - в соответствии с таблицей 32;

для обратных трубопроводов водяных тепловых сетей 50 °C;

- б) для паровых сетей максимальную температуру пара среднюю по длине рассматриваемого участка паропровода;
- в) для конденсатных сетей и сетей горячего водоснабжения максимальную температуру конденсата или горячей воды.

Таблица 32

Температурные режимы водяных тепловых сетей, °С	95 - 70	150 - 70	180 - 70
Расчетная температура теплоносителя t , °C	65	90	110

9.1.7. При определении температуры грунта в температурном поле подземного трубопровода тепловых сетей температуру теплоносителя следует принимать:

для водяных тепловых сетей - по температурному графику регулирования при среднемесячной температуре наружного воздуха расчетного месяца;

для паровых сетей - максимальную температуру пара в рассматриваемом месте паропровода (с учетом падения температуры пара по длине трубопровода);

для конденсатных сетей и сетей горячего водоснабжения - максимальную температуру конденсата или воды.

9.2. Определение толщины изоляции «Тилит», «Пенофол» по заданной величине теплового потока

Данную задачу рекомендуется рассчитывать с помощью программы «LIT THERMO ENGINEER. Инженерные коммуникации.» Программа прошла государственную регистрацию программ для ЭВМ, получен сертификат соответствия СП61.13330.2012 «Тепловая изоляция оборудования и трубопроводов. Актуализированная редакция СНиП 41-03-2003» в Центре Сертификации Программных Средств в строительстве и рекомендована к применению.

Загрузить программу можно по ссылке <u>http://zavodlit.ru/</u>. Программа распространяется как бесплатное (Freeware) приложение (в том числе и в качестве Библиотеки КОМПАС 3D)**

Расчетные параметры принимают в соответствии с 9.1.5 и 9.1.6.

При определении толщины тепловой изоляции следует учитывать влияние опор трубопроводов и оборудования.

9.3. Определение толщины тепловой изоляции «Тилит», «Пенофол» по заданной величине охлаждения (нагревания) вещества, сохраняемого в емкостях в течение определенного времени

Данную задачу рекомендуется рассчитывать с помощью программы «LIT THERMO ENGINEER. Инженерные коммуникации.» Программа прошла государственную регистрацию

программ для ЭВМ, получен сертификат соответствия СП61.13330.2012 «Тепловая изоляция оборудования и трубопроводов. Актуализированная редакция СНиП 41-03-2003» в Центре Сертификации Программных Средств в строительстве и рекомендована к применению.

Загрузить программу можно по ссылке http://zavodlit.ru/. Программа распространяется как бесплатное (Freeware) приложение (в том числе и в качестве Библиотеки КОМПАС 3D)**

Расчетную температуру окружающего воздуха следует принимать для оборудования и трубопроводов, расположенных на открытом воздухе:

для поверхностей с положительными температурами - среднюю наиболее холодной пятидневки с обеспеченностью 0,92;

для поверхностей с отрицательными температурами веществ - среднюю максимальную наиболее жаркого месяца;

для поверхностей, расположенных в помещении, в соответствии с заданием на проектирование, а при отсутствии данных о температуре окружающего воздуха - 20 °C.

Расчетную температуру вещества принимают в соответствии с заданием на проектирование.

9.4. Определение толщины тепловой изоляции «Тилит», «Пенофол» по заданному снижению (повышению) температуры вещества, транспортируемого трубопроводами (паропроводами)

Данную задачу рекомендуется рассчитывать с помощью программы «LIT THERMO ENGINEER. Инженерные коммуникации.» Программа прошла государственную регистрацию программ для ЭВМ, получен сертификат соответствия СП61.13330.2012 «Тепловая изоляция оборудования и трубопроводов. Актуализированная редакция СНиП 41-03-2003» в Центре Сертификации Программных Средств в строительстве и рекомендована к применению.

Загрузить программу можно по ссылке <u>http://zavodlit.ru/</u>. Программа распространяется как бесплатное (Freeware) приложение (в том числе и в качестве Библиотеки КОМПАС 3D)**

Расчетную температуру окружающей среды следует принимать для трубопроводов, расположенных: на открытом воздухе и в помещении, в соответствии с 9.3; в тоннелях - 40 °C;

в каналах или при бесканальной прокладке трубопроводов - минимальную среднемесячную температуру грунта на глубине заложения оси трубопровода.

Расчетную температуру теплоносителя принимают в соответствии с заданием на проектирование.

9.5. Определение толщины тепловой изоляции «Тилит», «Пенофол» по заданному количеству конденсата в паропроводах

Данную задачу рекомендуется рассчитывать с помощью программы «LIT THERMO ENGINEER. Инженерные коммуникации.» Программа прошла государственную регистрацию программ для ЭВМ, получен сертификат соответствия СП61.13330.2012 «Тепловая изоляция оборудования и трубопроводов. Актуализированная редакция СНиП 41-03-2003» в Центре Сертификации Программных Средств в строительстве и рекомендована к применению.

Загрузить программу можно по ссылке <u>http://zavodlit.ru/</u>. Программа распространяется как бесплатное (Freeware) приложение (в том числе и в качестве Библиотеки КОМПАС 3D)**

Расчетные параметры окружающего воздуха следует принимать в соответствии с 9.3. Расчетную температуру вещества принимают в соответствии с заданием на проектирование.

9.6. Определение толщины тепловой изоляции «Тилит», «Пенофол» по заданному времени приостановки движения жидкого вещества в трубопроводах в целях предотвращения его замерзания или увеличения вязкости

Данную задачу рекомендуется рассчитывать с помощью программы «LIT THERMO ENGINEER. Инженерные коммуникации.» Программа прошла государственную регистрацию программ для ЭВМ, получен сертификат соответствия СП61.13330.2012 «Тепловая изоляция оборудования и трубопроводов. Актуализированная редакция СНиП 41-03-2003» в Центре Сертификации Программных Средств в строительстве и рекомендована к применению.

Загрузить программу можно по ссылке http://zavodlit.ru/. Программа распространяется как бесплатное (Freeware) приложение (в том числе и в качестве Библиотеки КОМПАС 3D)**

Расчетные параметры окружающего воздуха и теплоносителя следует принимать в соответствии с 9.3 и заданием на проектирование.

9.7. Определение толщины тепловой изоляции «Тилит», «Пенофол» по заданной температуре на поверхности изоляции

Данную задачу рекомендуется рассчитывать с помощью программы «LIT THERMO ENGINEER. Инженерные коммуникации.» Программа прошла государственную регистрацию программ для ЭВМ, получен сертификат соответствия СП61.13330.2012 «Тепловая изоляция оборудования и трубопроводов. Актуализированная редакция СНиП 41-03-2003» в Центре Сертификации Программных Средств в строительстве и рекомендована к применению.

Загрузить программу можно по ссылке <u>http://zavodlit.ru/</u>. Программа распространяется как бесплатное (Freeware) приложение (в том числе и в качестве Библиотеки КОМПАС 3D)**

9.7.1. Температуру на поверхности тепловой изоляции следует принимать не более, °C: а) для изолируемых поверхностей, расположенных в рабочей или обслуживаемой зонах помещений и содержащих вещества с температурой:

выше 500 °С	
от 150 до 500 °C	45
150 °C и ниже	40
вспышки паров ниже 45 °С	35;

б) для изолируемых поверхностей, расположенных на открытом воздухе в рабочей или обслуживаемой зоне:

Температура на поверхности тепловой изоляции трубопроводов, расположенных за пределами рабочей или обслуживаемой зоны, не должна превышать температурных пределов применения материалов покровного слоя, но не выше 75 °C.

9.7.2. Расчетную температуру окружающего воздуха следует принимать для поверхностей, расположенных:

на открытом воздухе - среднюю максимальную наиболее жаркого месяца; в помещении - в соответствии с 9.3.

- 9.7.3. При необходимости одновременного выполнения требований 9.1-9.5 и 9.7 принимается большее значение расчетной толщины изоляции.
 - 9.8. Определение толщины тепловой изоляции «Тилит», «Пенофол» с целью предотвращения конденсации влаги из окружающего воздуха на покровном слое тепловой изоляции оборудования и трубопроводов, содержащих вещества с температурой ниже температуры окружающего воздуха

Данную задачу рекомендуется рассчитывать с помощью программы «LIT THERMO ENGINEER. Инженерные коммуникации.» Программа прошла государственную регистрацию программ для ЭВМ, получен сертификат соответствия СП61.13330.2012 «Тепловая изоляция оборудования и трубопроводов. Актуализированная редакция СНиП 41-03-2003» в Центре Сертификации Программных Средств в строительстве и рекомендована к применению.

Загрузить программу можно по ссылке <u>http://zavodlit.ru/</u>. Программа распространяется как бесплатное (Freeware) приложение (в том числе и в качестве Библиотеки КОМПАС 3D)

Данный расчет следует выполнять только для изолируемых поверхностей, расположенных в помещении.

Расчетная температура и относительная влажность воздуха принимаются в соответствии с заданием на проектирование.

- 9.9. При расчете толщины тепловой изоляции «Тилит», «Пенофол» с целью предотвращения конденсации влаги на внутренних поверхностях объектов, транспортирующих газообразные вещества, содержащие водяные пары или водяные пары и газы, которые при растворении в сконденсировавшихся водяных парах могут привести к образованию агрессивных продуктов, расчетную температуру окружающей среды следует принимать в соответствии с 9.3.
- 9.10. Для изолируемых поверхностей с отрицательными температурами, расположенных в помещении, толщина теплоизоляционного слоя, определенная по условиям 9.1, 9.2, должна быть проверена по 9.8. В результате принимается большее значение толщины слоя.
- 9.11. Теплоизоляционную конструкцию с теплоизоляционным слоем из однородного материала, установленного в несколько слоев, при расчетах рассматривают как однослойную.

Расчет толщины теплоизоляционного слоя конструкции, состоящей из двух и более слоев разнородных материалов, следует проводить исходя из того, что межслойная температура не превышает максимальную температуру применения теплоизоляционного материала последующих слоев. Толщину каждого слоя рассчитывают отдельно.

9.12. Расчетную толщину теплоизоляционного слоя в конструкциях тепловой изоляции на основе волокнистых материалов и изделий (матов, плит, холстов) следует округлять до значений, кратных 10

В конструкциях на основе минераловатных цилиндров, жестких ячеистых материалов, материалов из вспененного синтетического каучука, полиэтилена и пенопластов следует принимать ближайшую к расчетной толщину изделий по нормативным документам на соответствующие материалы.

Если расчетная толщина теплоизоляционного слоя не совпадает с номенклатурной толщиной выбранного материала, следует принимать по действующей номенклатуре ближайшую более высокую толщину теплоизоляционного материала.

Допускается принимать ближайшую более низкую толщину теплоизоляционного слоя в случаях расчета по температуре на поверхности изоляции и нормам плотности теплового потока, если разница между расчетной и номенклатурной толщиной не превышает 3 мм.

9.13. Минимальную толщину теплоизоляционного слоя следует принимать:

при изоляции цилиндрами из волокнистых материалов - равной минимальной толщине, предусматриваемой государственными стандартами или техническими условиями;

при изоляции тканями, полотном стекловолокнистым, шнурами - 20 мм;

при изоляции изделиями из волокнистых уплотняющихся материалов - 20 мм;

при изоляции жесткими материалами, изделиями из вспененных полимеров - равной минимальной толщине, предусматриваемой государственными стандартами или техническими условиями.

9.14. Предельная толщина теплоизоляционного слоя в конструкциях тепловой изоляции трубопроводов приведена в Приложении Г. (СП 61.13330.2012 «СНиП 41-03-2003 Тепловая изоляция оборудования и трубопроводов»)

Если расчетная толщина больше, чем может обеспечить в соответствии с Приложением Г (СП 61.13330.2012 «СНиП 41-03-2003 Тепловая изоляция оборудования и трубопроводов»)

выбранный теплоизоляционный материал, следует применить более эффективный теплоизоляционный материал.

Применение конструкций с большей толщиной теплоизоляционного слоя требует технического обоснования.

9.15. Толщину теплоизоляционного слоя в конструкциях тепловой изоляции приварной, муфтовой и несъемной фланцевой арматуры следует принимать равной толщине изоляции трубопровода.

Толщину теплоизоляционного слоя в съемных теплоизоляционных конструкциях фланцевых соединений и фланцевой арматуры с положительной и отрицательной температурой транспортируемых веществ следует принимать равной толщине изоляции трубопровода.

- 9.16. Для поверхностей с температурой выше 300 °C и ниже минус 60 °C не допускается применение однослойных конструкций. При многослойной конструкции последующие слои должны перекрывать швы предыдущего.
- 9.17. Заказные толщину и объем теплоизоляционных изделий из уплотняющихся материалов следует определять по рекомендуемому Приложению Д. (СП 61.13330.2012 «СНиП 41-03-2003 Тепловая изоляция оборудования и трубопроводов»)
- 9.18. Толщину металлических листов, лент, применяемых для покровного слоя, в зависимости от наружного диаметра или конфигурации теплоизоляционной конструкции следует принимать по таблице 33.

Таблица 33

Толщина металлических листов для покровного слоя тепловой изоляции «Тилит», «Пенофол»

Материал покровного слоя	Толщина листа, мм, при диаметре изоляции, мм						
	350 и менее	св. 350 до 600	св. 600 до 1600	св. 1600 и плоские поверхности			
Листы и ленты из нержавеющей стали	0,35 - 0,5	0,5	0,5 - 0,8	0,5 - 0,8			
Сталь тонколистовая оцинкованная с непрерывных линий	0,35 - 0,8	0,5 - 0,8	0,5 - 0,8	1,0			

Листы из тонколистовой стали, в том числе с полимерным покрытием	0,35 - 0,5	0,5 - 0,8	0,8	1,0
Листы из алюминия и алюминиевых сплавов	0,3	0,5 - 0,8	0,8	1,0
Ленты из алюминия и алюминиевых сплавов	0,25 - 0,3	0,3 - 0,8	0,8	1,0

- 9.19. В качестве покровного слоя теплоизоляционных конструкций из изделий «Тилит», «Пенофол» диаметром изоляции более 1600 мм и плоских, расположенных в помещении с неагрессивными и слабоагрессивными средами, допускается применять металлические листы и ленты толщиной 0,7 0,8 мм, а для трубопроводов диаметром изоляции более 600 до 1600 мм 0,6 мм.
- 9.20. Листы и ленты из алюминия и алюминиевых сплавов толщиной 0,25 0,3 мм рекомендуется применять гофрированными.
- 9.21. Штукатурный покровный слой теплоизолированной поверхности, расположенной в помещении, должен быть оклеен тканью. Толщину штукатурного покрытия при укладке по жестким или волокнистым материалам в зависимости от диаметра изолируемого объекта рекомендуется принимать по таблице 34.

Таблица 34

Вид изоляционного материала	Толщина штукатурного покрытия, мм				
(основание)	Вид изолируемого объекта				
	трубопроводы нару	оборудование			
	до 133 вкл.	159 и более			
Жесткие изделия	10	15	20		
Волокнистые изделия	15	20 - 25			

9.22. Для теплоизоляционных конструкций, подвергающихся воздействию агрессивных сред, следует предусматривать защиту металлических покрытий от коррозии.

При использовании в качестве покровного слоя стали тонколистовой оцинкованной толщина цинкового покрытия выбирается с учетом степени агрессивного воздействия среды и предполагаемого срока службы покровного слоя, но не менее 20 мкм.

При применении в качестве покровного слоя листов и лент из алюминия и алюминиевых сплавов и теплоизоляционного слоя в стальной неокрашенной сетке или при устройстве каркаса следует предусматривать установку под покровный слой прокладки из рулонного материала или окраску покровного слоя изнутри битумным лаком.

- 9.23. Под покровный слой из неметаллических материалов в помещениях хранения и переработки пищевых продуктов следует предусматривать установку сетки стальной из проволоки диаметром не менее 1 мм с ячейками размером не более 12 x 12 мм.
- 9.24. Конструкция тепловой изоляции должна исключать ее деформацию и сползание теплоизоляционного слоя в процессе эксплуатации. В составе теплоизоляционных конструкций оборудования и трубопроводов следует предусматривать опорные элементы и разгружающие устройства, обеспечивающие механическую прочность и эксплуатационную надежность конструкций. На вертикальных участках трубопроводов и оборудования опорные конструкции следует предусматривать через каждые 3 4 м по высоте.
- 9.25. В конструкциях тепловой изоляции оборудования и трубопроводов с отрицательными

температурами веществ не следует применять металлические крепежные детали, проходящие через всю толщину теплоизоляционного слоя. Крепежные детали или их части следует предусматривать из материалов с теплопроводностью не более 0,23 Вт/(м х °C).

Деревянные крепежные детали должны быть обработаны антипиреном и антисептическим составом. Элементы крепления, изготовленные из углеродистой стали, должны иметь антикоррозийное покрытие.

9.26. Размещение крепежных де

талей на изолируемых поверхностях следует принимать в соответствии с ГОСТ 17314.

9.27. Детали, предусматриваемые для крепления теплоизоляционной конструкции на поверхности с отрицательными температурами, должны иметь антикоррозионное покрытие или изготавливаться из коррозионно-стойких материалов.

Крепежные детали, соприкасающиеся с изолируемой поверхностью, следует предусматривать:

для поверхностей с температурой от минус 40 до 400 °C - из углеродистой стали;

для поверхностей с температурой выше 400 и ниже минус 40 °C - из того же материала, что и изолируемая поверхность.

Элементы крепления теплоизоляционного и покровного слоев теплоизоляционных конструкций оборудования и трубопроводов, расположенных на открытом воздухе в районах с расчетной температурой окружающего воздуха ниже минус 40 °C, следует применять из легированной стали или алюминия.

9.28. Конструкция покровного слоя тепловой изоляции должна допускать возможность компенсации температурных деформаций изолируемого объекта и теплоизоляционной конструкции.

Температурные швы в защитных покрытиях горизонтальных трубопроводов следует предусматривать у компенсаторов, опор и поворотов, а на вертикальных трубопроводах - в местах установки опорных конструкций.

При изоляции жесткими формованными изделиями следует предусматривать вставки из волокнистых материалов в местах устройства температурных швов.

- 9.29. Выбор материала для покровного слоя теплоизоляционных конструкций оборудования и трубопроводов, расположенных на открытом воздухе в районах с расчетной температурой окружающего воздуха минус 40 °C и ниже, следует производить с учетом температурных пределов применения материалов по действующим нормативным документам.
- 9.30. Конструкция крепления покровного слоя тепловой изоляции оборудования и трубопроводов с отрицательными температурами веществ должна исключать возможность повреждения пароизоляционного слоя в процессе эксплуатации.
- 9.31. Для оборудования и трубопроводов с отрицательными температурами при применении пароизоляционного слоя из рулонных материалов без сплошной наклейки следует предусматривать герметизацию швов пароизоляционного слоя; при температуре изолируемой поверхности ниже минус 60 °C следует также предусматривать герметизацию швов покровного слоя герметиками или пленочными клеящимися материалами.
- 9.32. Для бесканальной прокладки трубопроводов тепловых сетей в сухих грунтах возможно применение изоляции из штучных формованных изделий (скорлупы, сегменты) из пенополиуретана или полимербетона с водонепроницаемым покровным слоем, при этом теплоизоляционные изделия следует укладывать на водостойких и температуростойких

теплоизоляционные изделия следует укладывать на водостоиких и температуростоиких мастиках или клеях.

Целью решения задач в программе «LIT THERMO ENGINEER. Инженерные коммуникации» является подбор необходимой толщины утеплителя для достижения нормируемых величин тепловых потерь или для предотвращения нежелательных последствий (выпадение конденсата, защита от замерзания и т.д.). Главной количественно-качественной величиной является мера теплового

^{**}Программа «LIT THERMO ENGINEER. Инженерные коммуникации.» Расчетная программа соответствует СП61.13330.2012 «Тепловая изоляция оборудования и трубопроводов. Актуализированная редакция СНиП 41-03-2003».

потока с погонного метра (когда речь идет о трубопроводах) или квадратного (речь идет о плоских поверхностях, емкостях), а уже в зависимости от него определяют дальнейшие значения. Нормируемые величины теплового потока установлены в п.6 СП61.13330.2012 «Тепловая изоляция оборудования и трубопроводов. Актуализированная редакция СНиП 41-03-2003».

Программа прошла государственную регистрацию программ для ЭВМ, получен сертификат соответствия СП61.13330.2012 «Тепловая изоляция оборудования и трубопроводов.

Актуализированная редакция СНиП 41-03-2003» в Центре Сертификации Программных Средств в строительстве и рекомендована к применению.

Загрузить программу можно по ссылке http://zavodlit.ru/

Программа распространяется как бесплатное (Freeware) приложение (в том числе и в качестве Библиотеки КОМПАСЗD)

10 Общие требования к производству теплоизоляционных работ с применением изделий «Тилит», «Пенофол»

При монтаже теплоизоляционных конструкций с применением изделий «Тилит» и «Пенофол» следует соблюдать следующие требования.

- $10.1\, {\sf Теплоизоляционные}$ работы должны выполняться в соответствии с требованиями СНиП 12-03-2001 и СНиП 12-04-2002
- 10.2 При выполнении работ рекомендуется выполнять положения «Инструкции по монтажу теплоизоляционных изделий «Тилит», «Пенофол» разработанную ЗАО «Завод ЛИТ», и настоящий стандарт.
- 10.3 Теплоизоляционные работы следует выполнять при температуре окружающего воздуха не ниже 5 °C. При работе на открытом воздухе в зимнее время следует устанавливать тепляки для устройства местного обогрева.
- 10.4 Антикоррозийное покрытие наносят на поверхность, подлежащую тепловой изоляции, в соответствии с проектной документацией до начала теплоизоляционных работ.
- 10.5 Поверхность, подлежащая тепловой изоляции, должна быть очищена от пыли, грязи, ржавчины, масел и т.п.
- 10.6 При работе с клеем «Тилит» следует соблюдать следующие условия:
- работы следует проводить в хорошо проветриваемом помещении вдали от источников огня с использованием резиновых перчаток;
- клей наносят на чистую, сухую и обезжиренную поверхность;
- клей рекомендуется использовать при температуре окружающего воздуха не ниже 5°C;
- оптимальная температура для проведения работ с клеем +20°C, время высыхания клея 24 ч;
- в случае длительного нахождения или транспортировки клея при отрицательных температурах, перед применением его необходимо выдержать при комнатной температуре в течение 10-12 часов
- при склеивании швов теплоизоляционных изделий клей «Тилит» следует равномерно наносить на обе склеиваемые поверхности, которые плотно с надавливанием соединяют через 5-10 мин;
- при тепловой изоляции емкостей и оборудования клей «Тилит» следует наносить на изолируемую поверхность и поверхность теплоизоляционных изделий.
- 10.7 Крепление изделий «Тилит» и покровных материалов следует осуществлять в соответствии с проектной документацией.
- 10.8 Открытые торцевые поверхности теплоизоляционных изделий при тепловой изоляции воздуховодов прямоугольных сечений и низкотемпературных трубопроводов следует проклеивать лентой армированной самоклеящейся «Тилит» или лентой алюминиевой самоклеящейся армированной «ЛАС-А».
- 10.9 При выполнении теплоизоляционных работ не допускается деформировать или растягивать изделия «Тилит», «Пенофол». Изделия должны быть слегка сжаты, так как в процессе эксплуатации возможна тепловая усадка изделий.
- 10.10 Тепловую изоляцию фитингов (отводов, переходов, тройников) рекомендуется проводить

дополнительными изделиями, заранее изготовленными в условиях мастерских из трубок или рулонов (листов) «Тилит», «Пенофол».

10.11 При выполнении теплоизоляционных работ до начала монтажа трубопроводов (домонтажная тепловая изоляция) края трубопровода следует оставлять неизолированными на длину не менее 250 - 300 мм для обеспечения безопасного производства сварочных работ. При производстве сварочных работ края тепловой изоляции следует закрывать негорючим материалом.

Домонтажную тепловую изоляцию рекомендуется выполнять в мастерских или на производственных базах.

- 10.12 При тепловой изоляции крупноразмерных вентиляционных коробов прямоугольного сечения рекомендуется выполнять тепловую изоляцию нижней поверхности воздуховода, а затем боковые и верхнюю поверхности.
- 10.13 Для монтажа тепловой изоляции используют следующий набор инструментов:
- нож слезвием длиной 10-15 см;
- набор пробойников;
- линейка;
- транспортир;
- циркуль;
- кронциркуль;
- кисточка с жесткой щетиной длиной 20 25 мм;
- шариковая ручка для разметки изоляции;
- стусло
- шило
- заклепочник (ручной или электрический)

Приложение А (рекомендуемое)

МЕТОДЫ РАСЧЕТА ТЕПЛОВОЙ ИЗОЛЯЦИИ «ТИЛИТ», «ПЕНОФОЛ» ОБОРУДОВАНИЯ И ТРУБОПРОВОДОВ

А.1. Расчетные формулы стационарной теплопередачи в теплоизоляционных конструкциях

Поверхностная плотность теплового потока через плоские поверхности рассчитывается по формулам:

однослойная плоская стенка

$$q_F = \frac{t_{_{
m B}} - t_{_{
m H}}}{R_{_{
m BH}} + R_{_{
m CT}} + R_{_{
m H3}} + R_{_{
m H}}}$$
 ; (1)

многослойная плоская стенка из n слоев

$$q_F = \frac{t_{_{\rm B}} - t_{_{\rm H}}}{R_{_{\rm BH}} + R_{_{\rm CT}} + \sum_{i=1}^{n} R_i + R_{_{\rm H}}} . (2)$$

Линейная плотность теплового потока через цилиндрические поверхности рассчитывается по формулам:

однослойная цилиндрическая стенка

$$q_{L} = \frac{t_{\rm B} - t_{\rm H}}{R_{\rm BH}^{L} + R_{\rm CT}^{L} + R_{\rm H3}^{L} + R_{\rm H}^{L}}; (3)$$

многослойная цилиндрическая стенка из n слоев

$$q_{L} = \frac{t_{\rm B} - t_{\rm H}}{R_{\rm BH}^{L} + R_{\rm cr}^{L} + \sum_{i=1}^{n} R_{\rm i}^{L} + R_{\rm H}^{L}}; (4)$$

где $q_{\scriptscriptstyle F}$ - поверхностная плотность теплового потока через плоскую теплоизоляционную конструкцию, Вт/м2;

 $t_{_{
m B}}$ - температура среды внутри изолируемого объекта, °C;

 $t_{_{
m H}}$ - температура окружающей среды, °C;

 $R_{_{
m BH}}$ - сопротивление теплоотдаче на внутренней поверхности стенки изолируемого объекта, м2 х $^{\circ}$ C/BT;

 $R_{_{\! \! \mathrm{H}}}$ - то же, на наружной поверхности теплоизоляции, м2 х °С/Вт;

 $R_{\scriptscriptstyle
m cr}$ - термическое сопротивление стенки изолируемого объекта, м2 х °С/Вт;

 $R_{_{
m H3}}$ - то же, плоского слоя изоляции, м2 х $^{\circ}$ С/Вт;

 $\sum_{i=1}^{\infty}R_{i}$ - полное термическое сопротивление n-слойной плоской изоляции;

 R_i - термическое сопротивление i-го слоя, м2 х °С/Вт;

 q_L - линейная плотность теплового потока через цилиндрическую теплоизоляционную конструкцию, Вт/м;

 $R^{L}_{_{
m BH}}$ - линейное термическое сопротивление теплоотдаче внутренней стенки изолируемого объекта, м х °C/Вт;

 $R_{\rm H}^L$ - то же, наружной изоляции, мх°С/Вт;

 $R_{
m cr}^L$ - линейное термическое сопротивление цилиндрической стенки изолируемого объекта, м х $^{\circ}$ C/Bt;

 $R^{\scriptscriptstyle L}_{\scriptscriptstyle
m H3}$ - то же, цилиндрического слоя изоляции, м х °С/Вт;

 $\sum_{i=1}^n R_i^L$ - полное линейное термическое сопротивление n-слойной цилиндрической

изоляции;

 R_i^L - линейное термическое сопротивление і-го слоя, м х °С/Вт.

В уравнениях (1) - (4) сопротивления теплоотдаче и термические сопротивления стенок определяются по формулам:

$$R_{_{
m BH}}=rac{1}{lpha_{_{
m BH}}}$$
 ; $R_{_{
m H}}=rac{1}{lpha_{_{
m H}}}$; $R_{_{
m H3}}=rac{\delta_{_{
m H3}}}{lpha_{_{
m H3}}}$; $R_{_{
m cT}}=rac{\delta_{_{
m CT}}}{lpha_{_{
m CT}}}$; $R_i=rac{\delta_i}{lpha_i}$; (5)

$$R_{\rm\scriptscriptstyle BH}^{\rm\scriptscriptstyle L} = \frac{1}{\pi d_{\rm\scriptscriptstyle BH}^{\rm\scriptscriptstyle CT} \alpha_{\rm\scriptscriptstyle BH}}; R_{\rm\scriptscriptstyle H}^{\rm\scriptscriptstyle L} = \frac{1}{\pi d_{\rm\scriptscriptstyle H}^{\rm\scriptscriptstyle H3} \alpha_{\rm\scriptscriptstyle H}}; R_{\rm\scriptscriptstyle H3}^{\rm\scriptscriptstyle L} = \frac{1}{2\pi \lambda_{\rm\scriptscriptstyle H3}} \cdot \ln \frac{d_{\rm\scriptscriptstyle H}^{\rm\scriptscriptstyle H3}}{d_{\rm\scriptscriptstyle H}^{\rm\scriptscriptstyle CT}}; (6)$$

$$R_{\rm cr}^{L} = \frac{1}{2\pi\lambda_{\rm cr}} \cdot \ln\frac{d_{\rm H}^{\rm cr}}{d_{\rm BH}^{\rm cr}}; \ R_{i}^{L} = \frac{1}{2\pi\lambda_{i}} \cdot \ln\frac{d_{\rm H}^{i}}{d_{\rm BH}^{i}}; (7)$$

где $\alpha_{_{\mathrm{BH}}}$, $\alpha_{_{\mathrm{H}}}$ - коэффициенты теплоотдачи внутренней поверхности стенки изолируемого объекта и наружной поверхности изоляции, BT/(м2 x °C);

 $\lambda_{\rm cr}$, $\lambda_{\rm H3}$, λ_i - коэффициенты теплопроводности соответственно материала стенки изолируемого объекта, однослойной изоляции, изоляции i-го слоя n-слойной изоляции, вт/(м x °C):

 $\delta_{\rm cr}$, $\delta_{\rm H3}$, δ_i , - толщина соответственно стенки изолируемого объекта, однослойной изоляции, i-го слоя n-слойной изоляции, м;

 $d_{_{
m BH}}^{^{
m cT}}$, $d_{_{
m H}}^{^{
m cT}}$ - внутренний и наружный диаметры стенки изолируемого объекта, м;

 $d_{\scriptscriptstyle
m H}^{\scriptscriptstyle
m H3}$ - наружный диаметр изоляции, м;

 $d_{_{
m H}}^{^i}$, $d_{_{
m BH}}^{^i}$ - наружный и внутренний диаметры і-го слоя n-слойной изоляции, м. Распределение температур в многослойной изоляции рассчитывается по формулам:

температуры на внутренней и наружной поверхностях стенки изолируемого объекта плоской формы:

$$t_{_{
m BH}}^{^{
m cT}}=t_{_{
m B}}-q_{_F}R_{_{
m BH}}$$
 ; $t_{_{
m H}}^{^{
m cT}}=t_{_{
m BH}}^{^{
m cT}}-q_{_F}R_{_{
m CT}}$; (8)

температура $t_{\mathrm{I}}^{^{\mathrm{H}}}$ на наружной поверхности первого слоя изоляции, на границе первого и второго слоев

$$t_1^{\text{\tiny H}} = t_{\text{\tiny H}}^{\text{\tiny CT}} - q_F R_i$$
; (9)

и далее, начиная со второго слоя, на границах (і - 1)-го и і-го слоев

$$t_{1}^{\scriptscriptstyle \mathrm{H}}=t_{(i-1)}^{\scriptscriptstyle \mathrm{H}}-q_{\scriptscriptstyle F}R_{i}$$
 ; (10)

температура на наружной поверхности і-слоя п-слойной стенки:

$$t_i^{\text{H}} = t_{\text{H}} + q_F R_{\text{H}}$$
. (11)

Распределение температур в цилиндрических многослойных изоляционных конструкциях рассчитывается по формулам:

$$\begin{split} t_{\text{BH}}^{\text{ct}} &= t_{\text{B}} - q_{L} R_{\text{BH}}^{L} \; ; \; t_{\text{H}}^{\text{ct}} = t_{\text{BH}}^{\text{ct}} - q_{L} R_{\text{ct}}^{L} \; ; \; \text{(12)} \\ \\ t_{\text{I}}^{\text{H}} &= t_{\text{H}}^{\text{ct}} - q_{L} R_{\text{I}}^{L} \; ; \; \text{(13)} \\ \\ t_{i}^{\text{H}} &= t_{(i-1)}^{\text{ct}} - q_{L} R_{\text{i}}^{L} \; ; \; \text{(14)} \\ \\ t_{i}^{\text{H}} &= t_{\text{H}} + q_{L} R_{\text{H}}^{L} \; . \; \text{(15)} \end{split}$$

Значения поверхностной и линейной плотности тепловых потоков, входящих в формулы (8) - (15), определяются по (1) - (4), а термические сопротивления - по (5) - (7).

При расчете многослойных конструкций по формулам (2), (4) необходимо знать коэффициенты теплопроводности изоляционных слоев. Поскольку они зависят от температуры, должны быть известны средние температуры ка

ждого слоя, для определения которых необходимо знать температуры на границах слоев. Для их расчета используется метод последовательных приближений, предусматривающий проведение нескольких расчетных операций.

На первом этапе для всех слоев средняя температура изоляции принимается равной полусумме температур внутренней и наружной среды, при этой температуре определяется теплопроводность всех теплоизоляционных слоев. Затем, по (2), (4) определяют значения q_F или q_L и по (8) - (11) для плоской и по (12) - (15) цилиндрической стенок рассчитывают температуры на границах слоев и средние температуры каждого слоя.

На втором этапе по найденным на первом этапе средним температурам слоев вновь определяют теплопроводность всех слоев, затем находят плотности потоков тепла и снова рассчитывают послойные температуры, и так далее до требуемой точности расчета. Например, до тех пор, пока послойные температуры на k-м и (k - 1)-м шаге будут отличаться не более чем на 5%. В практических расчетах для этой цели необходимо проведение не более 3 - 4 расчетных операций.

А.2. Расчет тепловой изоляции «Тилит», «Пенофол» оборудования и трубопроводов

В практических расчетах тепловой изоляции принимается ряд допущений, позволяющих использовать упрощенные расчетные формулы.

Сопротивление теплоотдаче от внутренней среды к внутренней поверхности стенки изолируемого объекта для жидких и газообразных сред является пренебрежимо малым в сравнении с термическим сопротивлением теплоизоляционного слоя и в практических расчетах может не учитываться.

Теплопроводность стенок изолируемого оборудования и трубопроводов, изготовленных из металла, в десятки раз превышает теплопроводность изоляции, поэтому термическим сопротивлением стенки

также можно пренебречь без заметного снижения точности расчета.

С учетом указанных допущений в практических расчетах для определения теплового потока через изолированные стенки трубопроводов и оборудования используются следующие формулы: для плоских поверхностей и цилиндрических диаметром более 2 м

$$q_F = \frac{\left(t_{_{\rm B}} - t_{_{\rm H}}\right)K}{\sum_{i=1}^n R_i + R_{_{\rm H}}}$$
; (16)

для трубопроводов диаметром менее 2 м

$$q_{L} = \frac{\left(t_{_{\rm B}} - t_{_{\rm H}}\right)K}{\sum_{i=1}^{n} R_{i}^{L} + R_{_{\rm H}}^{L}}, (17)$$

где К - коэффициент дополнительных потерь, учитывающий теплопотери через теплопроводные включения в теплоизоляционных конструкциях, обусловленных наличием в них крепежных деталей и опор (таблица А.1).

Таблица А.1

Значения коэффициента дополнительных потерь для трубопроводов

Тип изолируемого объекта	Коэффициент К
Трубопроводы на открытом воздухе, в непроходных каналах, тоннелях и помещениях:	
а) стальные на подвижных опорах, условным проходом, мм: до 150 150 и более	1,2 1,15
б) стальные на подвесных опорах в) неметаллические на подвижных и подвесных опорах Трубопроводы бесканальной прокладки	1,05 1,7 1,15

Термическое сопротивление слоев тепловой изоляции «Тилит», «Пенофол» и сопротивление внешней теплоотдаче в (16), (17) определяется по формулам (5), (6), в которых теплопроводность изоляции принимается по Приложению Б (СП 61.13330.2012 «СНиП 41-03-2003 Тепловая изоляция оборудования и трубопроводов»), а коэффициент теплоотдачи на поверхности изоляции - по таблице А.2.

Таблица А.2

Значения коэффициента теплоотдачи α , Вт/(м2 x °C)

Изолированный объект	В закрытом помещении Покрытия Покрытия с высоким коэффициентом коэффициентом		На открытом воздухе при			
			скорости ветра <3>, м/с			
		излучения <2>	5	10	15	

Горизонтальные трубопроводы Вертикальные трубопроводы, оборудование, плоская стенка	7	10	20	26	35
	8	12	26	35	52
<1> К ним относятся алюминиевых сплавов и алюминия <2> К ним относятся стеклопластики, различные окра <3> При отсутствии сведен соответствующие скорости 10 м/	штукатурки, ски (кроме крас ий о скорості	енкой. асбестоцементы ски с алюминие	ные вой п	покры удрой) .

Плотность теплового потока через теплоизоляционные конструкции, граничащие с грунтом, определяется по формулам (1) - (4), в которых термические сопротивления внешней теплоотдаче $R_{_{
m H}}$ и $R_{_{
m H}}^L$ заменяются термическим сопротивлением грунта.

- В общем случае термическое сопротивление грунта зависит от конфигурации и расположения изолируемого объекта в массиве грунта, его температуры и теплопроводности, что влияет на распределение температур и тепловых потоков в теплоизоляционном слое.
- В инженерных расчетах принимается допущение об одномерности температурного поля в теплоизоляционном слое, что позволяет с достаточной для практики точностью использовать формулы (5) (7) для расчета термического сопротивления плоских и цилиндрических теплоизоляционных конструкций подземных объектов.

А.2.1. Расчеттолщины тепловой изоляции «Тилит», «Пенофол» по нормированной плотности теплового потока

Расчет толщины тепловой изоляции по нормированной плотности теплового потока - $q_F^{^{\mathrm{H}}}$, $q_L^{^{\mathrm{H}}}$ для однослойных конструкций выполняется по следующим формулам. Для плоских и цилиндрических поверхностей с диаметром 2 м и более используется формула

$$\delta_{_{\mathrm{H3}}}=\lambda_{_{\mathrm{H3}}}\Bigg[rac{Kig(t_{_{\mathrm{B}}}-t_{_{\mathrm{H}}}ig)}{q_{_{F}}^{^{\mathrm{H}}}}-R_{_{\mathrm{H}}}\Bigg]$$
. (18)

Таблица А.3

Ориентировочные значения $R_{\scriptscriptstyle \rm H}^{^L}$, м х °С/Вт

Условный	Внутри і	На открытом	
диаметр трубы, мм	Для поверхностей с малым коэффициен- том излучения	Для поверхностей с высоким коэффициентом излучения	воздухе
	при те	, °C	

	100	300	500	100	300	500	100	300	500
32	0,50	0,35	0,30	0,33	0,22	0,17	0,12	0,09	0,07
40	0,45	0,30	0,25	0,29	0,20	0,15	0,10	0,07	0,05
50	0,40	0,25	0,20	0,25	0,17	0,13	0,09	0,06	0,04
100	0,25	0,19	0,15	0,15	0,11	0,10	0,07	0,05	0,04
125	0,21	0,17	0,13	0,13	0,10	0,09	0,05	0,04	0,03
150	0,18	0,15	0,11	0,12	0,09	0,08	0,05	0,04	0,03
200	0,16	0,13	0,10	0,10	0,08	0,07	0,04	0,03	0,03
250	0,13	0,10	0,09	0,09	0,07	0,06	0,03	0,03	0,02
300	0,11	0,09	0,08	0,08	0,07	0,06	0,03	0,02	0,02
350	0,10	0,08	0,07	0,07	0,06	0,05	0,03	0,02	0,02
400	0,09	0,07	0,06	0,06	0,05	0,04	0,02	0,02	0,02
500	0,075	0,065	0,06	0,05	0,045	0,04	0,02	0,02	0,016
600	0,062	0,055	0,05	0,043	0,038	0,035	0,017	0,015	0,014
700	0,055	0,051	0,045	0,038	0,035	0,032	0,015	0,013	0,012
800	0,048	0,045	0,042	0,034	0,031	0,029	0,013	0,012	0,011
900	0,044	0,041	0,038	0,031	0,028	0,026	0,012	0,011	0,010
1000	0,040	0,037	0,034	0,028	0,026	0,024	0,011	0,010	0,009
2000	0,022	0,020	0,017	0,015	0,014	0,013	0,006	0,006	0,005

Примечания. 1. Для промежуточных значений диаметров и температуры ${\tt L}$

величина R определяется интерполяцией.

2. Для температуры теплоносителя ниже 100 °C принимаются данные, соответствующие 100 °C.

Для однослойных цилиндрических поверхностей диаметром менее 2 м используется формула

$$\ln B = 2\pi\lambda_{{}_{\mathrm{H}3}}\Bigg[rac{K\left(t_{{}_{\mathrm{B}}}-t_{{}_{\mathrm{H}}}
ight)}{q_{{}_{L}}^{{}_{\mathrm{H}}}}-R_{{}_{\mathrm{H}}}^{L}\Bigg].$$
 (19)

Коэффициент дополнительных тепловых потерь К через опоры трубопроводов в расчете толщины тепловой изоляции по нормативной плотности теплового потока принимается равным 1.

При расчете по формуле (19) предварительно определяют величину InB,

где $B = \frac{d_{_{
m H}}^{^{
m cT}} + 2\delta_{_{
m H3}}}{d_{_{
m H}}^{^{
m M3}}}$. Приближенные значения $R_{_{
m H}}^L$ принимаются по таблице А.3.

Затем находят величину В и определяют требуемую толщину изоляции по формуле

$$\delta_{\text{\tiny H3}} = \frac{d_{\text{\tiny H}}^{\text{\tiny CT}} (B-1)}{2}.$$
 (20)

Для двухслойных теплоизоляционных конструкций расчет толщины слоев по нормированной плотности теплового потока производится в следующей последовательности.

В случае, когда максимальная температура применения одного из выбранных теплоизоляционных материалов ниже температуры стенки изолируемого объекта в двухслойных теплоизоляционных конструкциях в качестве первого слоя на изолируемую поверхность устанавливается материал с более высокой допустимой температурой применения.

Толщина первого слоя определяется из условия, чтобы температура между обоими слоями t_1 , t_2 не превышала максимальной температуры применения основного изоляционного материала.

Для плоской стенки и цилиндрических объектов с диаметром 2 м и более для расчета толщины первого слоя применяется формула

$$\delta_{_{
m H31}}=\lambda_{_{
m H31}}\Bigg[rac{\left(t_{_{
m B}}-t_{_{
m 1,2}}
ight)}{q_{_F}^{_{
m H}}}\Bigg]$$
 . (21)

Для второго слоя применяется формула (18), в которую вместо значения $t_{_{\rm B}}$ подставляется $t_{1,2}$.

При расчете цилиндрических объектов с диаметром менее 2 м - аналогично однослойной конструкции по уравнению

$$\ln B_1 = 2\pi\lambda_{_{\rm H31}} \left[\frac{\left(t_{_{\rm B}} - t_{_{1,2}}\right)}{q_L^{_{\rm H}}} \right], (22)$$

в котором $B_{\rm l}=rac{d_{_{
m H}}^{_{
m cr}}+2\delta_{_{
m H31}}}{d_{_{
m H}}^{_{
m cr}}}$, определяют величину $\ln B_{\rm l}$, затем находят $B_{\rm l}$ и толщину первого слоя,

M:

$$\delta_{\text{\tiny H31}} = \frac{d_{\text{\tiny H}}^{\text{\tiny CT}} \left(B_1 - 1\right)}{2}.$$

Толщина второго слоя определяется с помощью формулы (19), в которой вместо значения $t_{\scriptscriptstyle \rm B}$ подставляется значение $t_{\scriptscriptstyle 1,2}$, а вместо В - B_2

$$B_2 = \frac{d_{_{\text{H31}}} + 2\delta_{_{\text{H32}}}}{d_{_{\text{H31}}}}.$$

Определив $\ln B_2$ находят B_2 , а затем толщину изоляции второго слоя, м:

$$\delta_{_{\rm H32}} = \frac{d_{_{\rm H31}}(B_2 - 1)}{2}$$
 . (23)

Расчет требуемой толщины тепловой изоляции по нормативной плотности теплового потока может быть выполнен методом последовательных приближений. Последовательность расчета для однослойной цилиндрической конструкции следующая.

Задаваясь начальным значением толщины изоляции δ_0 , м, определяемой требуемой точностью расчета, например, 0,001 м, с помощью последовательных шагов 1, 2, 3, 4,..., і для толщины изоляции: $\delta_1 = \delta_0 1$; $\delta_2 = \delta_0 2$; $\delta_3 = \delta_0 3$,..., $\delta_i = \delta_0 i$ производят вычисление линейной плотности тепловых потоков q_L^1 ; q_L^2 ;...; q_L^i по уравнению

$$q_{L}^{i} = \frac{\pi \left(t_{\text{\tiny B}} - t_{\text{\tiny H}}\right)}{\frac{1}{\alpha_{\text{\tiny H}} \left(\alpha_{\text{\tiny H}}^{\text{\tiny CT}} + 2\delta_{0}i\right)} + \frac{1}{2\lambda_{\text{\tiny H3}}} \ln \frac{d_{\text{\tiny H}}^{\text{\tiny CT}} + 2\delta_{0}i}{d_{\text{\tiny H}}^{\text{\tiny CT}}}} \ . (24)$$

На каждом шаге вычислений і производится сравнение q_L^i с заданным значением нормативного удельного потока $q_L^{^{\mathrm{H}}}$. При выполнении условия

$$q_L^i - q_L^{\text{H}} \le 0$$
 (25)

вычисления заканчиваются, а найденная величина $\delta = \delta_0 i$ является искомой, обеспечивающей заданную величину тепловых потерь.

Расчетные параметры при определении толщины изоляции по нормируемой плотности теплового потока следует принимать по 9.1.1 - 9.1.6 настоящего свода правил.

А.2.2. Расчеттолщины изоляции «Тилит», «Пенофол» по заданному снижению (повышению) температуры вещества, транспортируемого трубопроводами

Требуемое полное термическое сопротивление изоляции $R^L = R_{{ iny H}}^L + R_{{ iny H}}^L$ трубопровода длиной I, м, для обеспечения заданного снижения температуры транспортируемого по нему вещества от начальной $t_{{ iny B}}''$ до конечной $t_{{ iny B}}''$ при расходе вещества G, кг/ч, теплоемкостью C, кДж/(кг x °C) определяется из выражений:

при
$$\frac{t_{\scriptscriptstyle \mathrm{B}}'-t_{\scriptscriptstyle \mathrm{H}}}{t_{\scriptscriptstyle \mathrm{B}}''-t_{\scriptscriptstyle \mathrm{H}}} \ge 2$$
 , $R_{\scriptscriptstyle \mathrm{L}}^L = \frac{3,6Kl}{GC\ln\frac{t_{\scriptscriptstyle \mathrm{B}}'-t_{\scriptscriptstyle \mathrm{H}}}{t_{\scriptscriptstyle \mathrm{B}}''-t_{\scriptscriptstyle \mathrm{H}}}}$; (26)

при
$$rac{t_{ ext{\tiny B}}'-t_{ ext{\tiny H}}}{t_{ ext{\tiny B}}''-t_{ ext{\tiny H}}} < 2$$
 , $R_2^L = rac{3,6Kligg(rac{t_{ ext{\tiny B}}'+t_{ ext{\tiny B}}''}{2}-t_{ ext{\tiny H}}igg)}{GCig(t_{ ext{\tiny B}}'-t_{ ext{\tiny B}}''ig)}$, (27)

где $t_{_{\mathrm{H}}}$ - расчетная температура окружающей среды, °C.

Для определения требуемой толщины изоляции $\mathcal{S}_{_{\mathrm{H3}}}$, м, по найденным значениям $R_{_{1}}^{^{L}}$ используется формула

$$\ln B_{1,2} = 2\pi\lambda_{_{\mathrm{H3}}} \left(R_{1,2}^{L} - R_{_{\mathrm{H}}}^{L} \right)$$
 . (28)

Принимая приближенные значения $R_{\scriptscriptstyle
m H}$ по таблице А.3 и определяя по формуле (В.28) lnB, находят величину В и затем по формуле (37) толщину изоляции

$$\delta_{_{\text{H31},2}} = \frac{d_{_{\text{H}}}^{^{\text{cr}}} (B_{_{1,2}} - 1)}{2}.$$

Расчетные параметры при определении толщины тепловой изоляции по заданной величине снижения (повышения) температуры транспорти руемого вещества принимаются по 9.4 настоящего свода правил.

А.2.3. Расчет толщины тепловой изоляции «Тилит», «Пенофол» по заданной температуре наружной поверхности

Определение толщины изоляции по заданной температуре ее наружной поверхности $t_{\scriptscriptstyle \Pi}$ производится в том случае, когда изоляция нужна как средство, предохраняющее обслуживающий персонал от ожогов.

Расчет толщины тепловой изоляции выполняется по формулам: для плоских теплоизоляционных конструкций

$$\delta_{_{\mathrm{H3}}} = \frac{\lambda_{_{\mathrm{H3}}} \left(t_{_{\mathrm{B}}} - t_{_{\mathrm{II}}}\right)}{\alpha_{_{\mathrm{H}}} \left(t_{_{\mathrm{II}}} - t_{_{\mathrm{H}}}\right)}; (29)$$

для цилиндрических

$$\ln B = \ln \frac{d_{_{\rm H}}^{_{\rm CT}} + 2\delta_{_{\rm H3}}}{d_{_{\rm H}}^{_{\rm CT}}} = 2\pi\lambda_{_{\rm H3}}R_{_{\rm H}}^L \frac{t_{_{\rm B}} - t_{_{\rm H}}}{t_{_{\rm H}} - t_{_{\rm H}}}, (30)$$

где ориентировочное значение $R_{\scriptscriptstyle
m H}^L$ принимается по таблице А.3.

$$\delta_{_{\mathrm{H3}}} = \frac{d_{_{\mathrm{H}}}^{^{\mathrm{cr}}} (B-1)}{2}.$$

Рассмотренный метод является приближенным. Более точные результаты могут быть получены методом последовательных приближений. Расчет выполняется по формуле

$$\left(\frac{t_{_{\rm B}}-t_{_{\rm II}}}{t_{_{\rm II}}-t_{_{\rm H}}}\right)_{i} = \frac{\ln\frac{d_{_{\rm H}}^{^{\rm cr}}+2\delta_{_{0}}i}{d_{_{\rm H}}^{^{\rm cr}}}\alpha_{_{\rm H}}\left(d_{_{\rm H}}^{^{\rm cr}}+2\delta_{_{0}}i\right)}{2\lambda_{_{_{\rm H3}}}}. (31)$$

Задаваясь начальным значением толщины изоляции δ_0 , м, определяемым требуемой точностью расчета, например, 0,001 м, последовательными шагами 1, 2, 3,..., і для толщин изоляции: $\delta_1=\delta_01$; $\delta_2=\delta_02$; $\delta_3=\delta_03$,..., $\delta_i=\delta_0i$ производится вычисление величин:

$$\left(rac{t_{_{
m B}}-t_{_{
m II}}}{t_{_{
m II}}-t_{_{
m H}}}
ight)_{\!\!1}; \left(rac{t_{_{
m B}}-t_{_{
m II}}}{t_{_{
m II}}-t_{_{
m H}}}
ight)_{\!\!2}; \left(rac{t_{_{
m B}}-t_{_{
m II}}}{t_{_{
m II}}-t_{_{
m H}}}
ight)_{\!\!3}; ...; \left(rac{t_{_{
m B}}-t_{_{
m II}}}{t_{_{
m II}}-t_{_{
m H}}}
ight)_{\!\!i}$$
 по уравнению (31).

На каждом шаге вычислений і производится сравнение $\left(\frac{t_{_{
m B}}-t_{_{
m II}}}{t_{_{
m II}}-t_{_{
m II}}}\right)_i$ с заданным значением

$$\left(rac{t_{_{
m B}}-t_{_{
m II}}}{t_{_{
m II}}-t_{_{
m H}}}
ight)_p$$
 . При выполнении условия

$$\left(\frac{t_{\scriptscriptstyle \rm B}-t_{\scriptscriptstyle \rm II}}{t_{\scriptscriptstyle \rm II}-t_{\scriptscriptstyle \rm H}}\right)_i-\left(\frac{t_{\scriptscriptstyle \rm B}-t_{\scriptscriptstyle \rm II}}{t_{\scriptscriptstyle \rm II}-t_{\scriptscriptstyle \rm H}}\right)_n\geq 0 \ (\text{B.32})$$

вычисления заканчиваются, а найденная величина $\delta_i = \delta_0 i$ является с точностью до 1 мм заданной, обеспечивающей требуемую температуру поверхности изоляции.

Расчетные параметры при расчете толщины тепловой изоляции «Тилит», «Пенофол» по заданной температуре поверхности принимаются по 9.7.

В.2.4. Расчет толщины изоляции, предотвращающей конденсацию влаги из воздуха на ее поверхности

Данный расчет производится для изолированных объектов, расположенных в помещениях и содержащих вещества с температурой ниже температуры окружающего воздуха.

В этом случае изоляция должна обеспечивать требуемый расчетный перепад между температурами наружного воздуха и поверхностью изоляции $\left(t_{_{
m H}}-t_{_{
m II}}\right)$, при котором исключается конденсация влаги из воздуха (таблица A.4).

Таблица А.4

Расчетный перепад
$$(t_{\scriptscriptstyle \rm H}-t_{\scriptscriptstyle \rm II}),\,{}^{\circ}C$$

	40	50	60	70	80	90
10	13,4	10,4	7,8	5 , 5	3 , 5	1,6
15	14,2	10,9	9,1	5 , 7	3,6	1,7
20	14,8	11,3	8,4	5,9	3,7	1,8
25	15 , 3	11,7	8 , 7	6,1	3,8	1,9
30	15,9	12,2	9,0	6,3	4,0	2,0

Расчет выполняется по формулам: для плоской поверхности

$$R_{_{\rm H3}} = \frac{t_{_{\rm I}} - t_{_{\rm B}}}{t_{_{\rm H}} - t_{_{\rm II}}} R_{_{\rm H}}; \ \delta_{_{\rm H3}} = \frac{\lambda_{_{\rm H3}} \left(t_{_{\rm I}} - t_{_{\rm B}}\right)}{\alpha_{_{\rm II}} \left(t_{_{\rm II}} - t_{_{_{\rm II}}}\right)}; (33)$$

для цилиндрической поверхности

$$R_{_{\mathrm{H}3}}^{\mathrm{L}} = \frac{t_{_{\mathrm{II}}} - t_{_{\mathrm{B}}}}{t_{_{_{\mathrm{II}}}} - t_{_{_{\mathrm{II}}}}} R_{_{\mathrm{H}}}^{\mathrm{L}} \; ; \; \ln B = 2\pi \lambda_{_{_{\mathrm{H}3}}} R_{_{\mathrm{H}}}^{\mathrm{L}} \frac{t_{_{\mathrm{II}}} - t_{_{_{\mathrm{B}}}}}{t_{_{_{\mathrm{II}}}} - t_{_{_{\mathrm{II}}}}} \; .$$
(34)

Требуемая толщина изоляции определяется по методике, изложенной в А.2.3. В расчетах температуру наружной среды $t_{_{
m H}}$ следует принимать равной температуре воздуха в помещении.

Температуру внутренней среды $t_{_{
m B}}$ и относительную влажность воздуха в помещении ϕ принимают в соответствии с техническим заданием на проектирование.

Коэффициент теплоотдачи к наружной поверхности изоляции $\alpha_{_{\rm H}}$ принимается для поверхностей с низким коэффициентом излучения - 5 Вт/(м2 х °C), для поверхностей с высоким коэффициентом излучения - 7 Вт/(м2 х °C) (см. примечание к таблице A.2).

А.З. Расчет тепловой изоляции «Тилит», «Пенофол» трубопроводов тепловых сетей

А.3.1. Надземная прокладка

Тепловые потери через изолированную поверхность подающих и обратных трубопроводов тепловых сетей при надземной прокладке, при известной толщине изоляции $\delta_{_{\mathrm{H}3}}$, м, следует определять по формуле (17), а термические сопротивления, входящие в эту формулу, - по (6). В качестве температур внутренней и наружной сред $t_{_{\mathrm{B}}}$ и $t_{_{\mathrm{H}}}$ принимают расчетные температуры теплоносителя и окружающего воздуха, а коэффициент теплоотдачи $\alpha_{_{\mathrm{H}}}$ - по таблице A.2.

При определении толщины изоляции трубопроводов тепловых сетей по нормированным значениям плотности тепловых потоков от подающих и обратных теплопроводов используется методика расчетов, изложенная в разделе А.2.1. При этом расчетные температуры теплоносителя в подающем и обратном трубопроводе принимают по таблице А.5.

Таблица А.5

Среднегодовые температуры теплоносителя в водяных тепловых сетях, °С

Трубопровод	Расчетные температурные режимы, $^{\circ}$ С				
	95 - 70	150 - 70	180 - 70		
Подающий	65	90	110		
Обратный	50	50	50		

Расчетную температуру наружной среды принимают: при круглогодичной работе тепловой сети - среднегодовую температуру наружного воздуха, при работе только в отопительный период - среднюю температуру отопительного периода. Расчетный коэффициент теплоотдачи $\alpha_{_{\rm H}}$ - по таблице A.2.

А.3.2. Подземная прокладка в непроходных каналах

Тепловые потери через изолированную поверхность двухтрубных тепловых сетей, прокладываемых в непроходном канале шириной b и высотой h, м, на глубине H, м, от поверхности земли до оси канала определяются по формуле

$$q_{1,2}^{L} = q_{1}^{L} + q_{2}^{L} = \frac{\left(t_{\text{\tiny KAH}} - t_{\text{\tiny H}}\right)K}{R_{\text{\tiny KAH}} + R_{\text{\tiny TD}}^{\text{\tiny K}}} . (35)$$

Температура воздуха в канале $t_{_{\mathrm{KaH}}}$ определяется по формуле

$$t_{\text{кан}} = \frac{\frac{t_{\text{в1}}}{R_{\text{из1}}^{L} + R_{\text{н1}}^{L}} + \frac{t_{\text{в2}}}{R_{\text{из2}}^{L} + R_{\text{н2}}^{L}} + \frac{t_{\text{н}}}{R_{\text{кан}} + R_{\text{гр}}^{\text{к}}}}}{\frac{1}{R_{\text{из1}}^{L} + R_{\text{н1}}^{L}} + \frac{1}{R_{\text{из2}}^{L} + R_{\text{н2}}^{L}} + \frac{1}{R_{\text{кан}} + R_{\text{гр}}^{\text{к}}}}, (36)$$

где

$$R_{_{\rm H31}}^{^L} = \frac{1}{2\pi\lambda_{_{\rm H3}}} \ln\frac{d_{_1} + 2\delta_{_{\rm H31}}}{d_{_1}}; \; R_{_{\rm H32}}^{^L} = \frac{1}{2\pi\lambda_{_{\rm H3}}} \ln\frac{d_{_2} + 2\delta_{_{\rm H32}}}{d_{_2}} \; ; \; \text{(37)}$$

$$R_{{\rm H}1}^{L} = \frac{1}{2\pi\alpha_{k}\left(d_{1} + 2\delta_{{}_{{\rm H}3}}\right)}; \ R_{{\rm H}2}^{L} = \frac{1}{2\pi\alpha_{k}\left(d_{2} + 2\delta_{{}_{{\rm H}3}}\right)}; (38)$$

$$R_{\text{\tiny KAH}} = \frac{1}{\pi \alpha_k \frac{2bh}{h+h}}, (39)$$

здесь q_1^L , q_2^L - линейные плотности теплового потока от подающего и обратного трубопроводов, $B ext{T/m}$;

 d_1 , d_2 - наружные диаметры подающего и обратного трубопроводов, м;

 $t_{\rm pl}$, $t_{\rm p2}$ - температуры подающего и обратного трубопроводов, °C;

К - коэффициент дополнительных потерь (таблица А.1);

 $R^L_{_{
m H31}}$, $R^L_{_{
m H32}}$ - термические сопротивления изоляции подающего и обратного трубопроводов, м х °C/Вт;

 $R_{{ t H}1}^{L}$, $R_{{ t H}2}^{L}$ - термические сопротивления теплоотдаче от поверхности изоляции подающего и обратного трубопроводов, м х °C/Вт;

 $R_{\rm кан}$ - термическое сопротивление теплоотдаче от воздуха к поверхности канала, м х °С/Вт; h, b - высота и ширина канала, соответственно, м;

 α_k - коэффициент теплоотдачи в канале, принимается равным 11 Вт/(м2 х °С);

 $\lambda_{_{\! \!
m HS}}$ - теплопроводность изоляции в конструкции, Вт/(мх °C);

 $\delta_{_{\! exttt{H}31}}$, $\delta_{_{\! exttt{H}32}}$ - толщины изоляции подающего и обратного трубопроводов, м;

 $R_{
m rp}^{\scriptscriptstyle
m K}$ - термическое сопротивление грунта, Вт/(м х °С), определяется по формуле

$$R_{\rm rp}^{\kappa} = \frac{\ln\left[3, 5\frac{H}{h}\left(\frac{h}{b}\right)^{0,25}\right]}{\left(5, 7 + 0, 5\frac{b}{h}\right)\lambda_{\rm rp}}; (40)$$

 $\lambda_{\scriptscriptstyle {
m ID}}$ - теплопроводность грунта, Вт/(м х °C), таблица А.6.

Н - глубина заложения, расстояние от оси трубы до поверхности земли, м.

Таблица А.6

Теплопроводность грунта

Вид грунта	-I -11	Коэффициент теплопро- водности, $Br/(M \times {}^{\circ}C)$
	кг/м3	

Песок	1480	4	0,86
	1600	5	1,11
	_	15	1,92
		23,8	1,92
Суглинок	1100	8	0,71
		15	0,9
	1200	8	0,83
		15	1,04
	1300	8	0,98
	_	15	1,2
	1400	8	1,12
		15	1,36
		20	1,63
	1500	8	1,27
		15	1,56
	_	20	1,86
	1600	8	1,45
		15	1,78
	2000	5	1,75
		10	2,56
		11,5	2,68
Глинистый	1300	8	0,72
		18	1,08
		40	1,66
	1500	8	1,0
		18	1,46

	40	2,0
1600	8	1,13
	27	1,93

Расчет требуемой толщины тепловой изоляции по нормированной плотности теплового потока в зависимости от технических требований может выполняться в двух вариантах:

- а) по нормативным линейным плотностям теплового \overline{q}_1^L потока и \overline{q}_2^L , заданным отдельно для подающего и обратного трубопровода, в этом случае определяется толщина изоляции для каждого трубопровода;
- б) по суммарной нормативной линейной плотности теплового потока от подающего и обратного трубопровода $\overline{q}_{1,2}^L$, в этом случае определяется толщина изоляции, одинаковая для обоих трубопроводов.

Расчет толщины изоляции по нормативным линейным плотностям теплового потока, заданным отдельно для подающего - \overline{q}_1^L и обратного - \overline{q}_2^L трубопроводов, выполняется в следующей последовательности.

На первом этапе рассчитывают температуру в канале по формуле

$$t_{\text{\tiny KAH}} = t_{\text{\tiny H}} + K (q_{\text{\tiny I}}^L + q_{\text{\tiny 2}}^L) (R_{\text{\tiny KAH}} + R_{\text{\tiny TP}})$$
 . (41)

Затем для каждого трубопровода вычисляются значения $\ln B_1$ и $\ln B_2$ по формулам:

$$\ln B_1 = 2\pi\lambda_{_{\rm H3}} \left(\frac{t_{_{\rm B1}} - t_{_{
m KAH}}}{q_1^L} - R_{_{
m H}1}^L \right);$$
 (42)

$$\ln B_2 = 2\pi \lambda_{\text{\tiny H3}} \left(\frac{t_{\text{\tiny B2}} - t_{\text{\tiny KAH}}}{q_2^L} - R_{\text{\tiny H2}}^L \right), (43)$$

где приближенные значения $R_{\scriptscriptstyle \mathrm{H}1}^L$ и $R_{\scriptscriptstyle \mathrm{H}2}^L$ принимаются по таблице А.3.

Далее, после вычисления B_1 и B_2 , по формуле (20) рассчитывают требуемые толщины изоляции для подающего и обратного трубопроводов, обеспечивающие нормативные линейные потери тепла:

$$\delta_{\text{\tiny H31}} = \frac{d_1(B_1 - 1)}{2}$$
 (44); $\delta_{\text{\tiny H32}} = \frac{d_2(B_2 - 1)}{2}$. (45)

Расчет толщины изоляции подающего и обратного трубопроводов по суммарной нормативной линейной плотности теплового потока - $\overline{q}_{1,2}^L$, Вт/м, выполняется методом последовательных приближений (методом подбора).

На первом этапе задаются начальным значением толщины изоляции $\mathcal{S}_{_{\mathrm{H3}1}}=\mathcal{S}_{_{\mathrm{H3}2}}=\mathcal{S}_{_{0}}$, одинаковой для подающего и обратного трубопроводов, и по формулам (36) - (39)

рассчитывают температуру в канале. Затем по формуле (35) вычисляют суммарную линейную плотность теплового потока $q_{1\,2}^L$.

Полученное расчетное значение сравнивают с нормативной линейной плотностью теплового потока по таблицам 26, 27.

На втором этапе увеличивают или уменьшают толщину изоляции в зависимости от результата сравнения и повторяют расчет в той же последовательности до получения нового расчетного значения - $q_{1,2}^L$.

Расчет повторяют до тех пор, пока расчетное значение плотности теплового потока - $q_{1.2}^L$

будет отличаться от нормативного значения - $\overline{q}_{1,2}^{L}$ на заданную степень точности расчета,

например, не более чем на 1%. Последнее значение δ_i принимается в качестве расчетной толщины тепловой изоляции для подающего и обратного трубопроводов.

При расчете тепловой изоляции двухтрубных тепловых сетей в непроходных каналах расчетную температуру теплоносителя в подающих и обратных трубопроводах принимают по таблице A.5.

Расчетную температуру наружной среды принимают равной среднегодовой температуре грунта на глубине заложения трубопровода.

Коэффициент дополнительных тепловых потерь К при расчете толщины изоляции по нормированной плотности теплового потока принимается равным 1.

При расстоянии от поверхности грунта до перекрытия канала 0,7 м и менее за расчетную температуру наружной среды должна приниматься та же температура наружного воздуха, что и при надземной прокладке.

А. 3.3. Определение толщины теплоизоляционного слоя «Тилит», «Пенофол» по заданной величине охлаждения (нагревания) вещества, хранящегося в емкости

Расчет проводят для определения толщины теплоизоляции, необходимой для поддержания температуры вещества, хранящегося в емкости в течение определенного времени. Толщину теплоизоляционного слоя определяют по формуле

$$\delta_{\text{M3}} = \lambda_{\text{M3}} \left[\frac{3.96 \cdot (t_{\text{B}}^{\text{cp}} - t_{\text{H}}) \cdot F \cdot Z}{(t_{\text{B}}' - t_{\text{B}}') \cdot (V_{\text{B}} p_{\text{B}} C_{\text{B}} + V_{CT} p_{CT} C_{CT})} - \frac{1}{\alpha_{\text{H}}} \right] (46)$$

 $V_{\rm B}$ — объем вещества в изолируемом объекте, м³;

 V_{CT} — объем стенки емкости, м³;

 $p_{\scriptscriptstyle CT}$ — плотность материала стенки, кг/м³;

 C_{ct} — теплоемкость материала стенки, кДж/(кг·°С);

F- площадь теплоотдающей поверхности изолируемого объекта, м 2 ; :

 $t_{\rm H}$ – температура окружающей среды, °C;

 $t_{\rm B}$ – начальная температура теплоносителя, °C;

 $t_{\rm B}^{"}$ – конечная температура теплоносителя, °C;

 $t_{\scriptscriptstyle \mathrm{B}}^{\,\mathrm{cp}}$ — средняя температура теплоносителя, °С;

 $C_{\scriptscriptstyle B}$ — теплоемкость вещества (теплоносителя), находящегося внутри изолируемого объекта, кДж/(кг·°С);

 $p_{\scriptscriptstyle \rm B}$ — плотность вещества, кг/м³;

Z — заданное время хранения вещества в емкости или при остановке движения вещества в трубопроводе, ч.;

За температуру окружающего воздуха следует принимать:

среднюю наиболее холодной пятидневки с обеспеченностью 0,98 в соответствии со <u>СНиП 23-01</u>-99* или по данным местной метеостанции для конкретного населенного пункта - для изолируемых поверхностей трубопроводов с положительными температурами, расположенных на открытом воздухе, среднюю наиболее жаркого месяца в соответствии с СП 131.13330.2012. Свод правил. Строительная климатология. Актуализированная редакция СНиП 23-01-990 <u>СНиП 23-01</u>-99* или по данным местной метеостанции для конкретного населенного пункта - для изолируемых поверхностей трубопроводов с отрицательными температурами, расположенных на открытом воздухе,

в соответствии с заданием на проектирование или, если не указано в задании, 20°C - для изолируемых поверхностей трубопроводов, расположенных в помещениях.

Коэффициент теплоотдачи от наружной поверхности теплоизоляционной конструкции к окружающему воздуху принимают равным:

35 $BT/(m^2 \cdot {}^{\circ}C)$ - для конструкций, расположенных на открытом воздухе,

10 Вт/($m^2 \cdot {}^\circ$ C) - для конструкций, не имеющих покровного слоя и расположенных в помещениях, 6 Вт/($m^2 \cdot {}^\circ$ C) - для конструкций с утеплителем «Пенофол», покровным слоем из материалов «ТИТАНФЛЕКС», «Армофол ТК» или с применением изделий с покрытием «АЛ», расположенных в помещении.

Коэффициент *K*, учитывающий дополнительные потери на опорах, следует принимать по таблице A.1

А. 3.4. Определение толщины теплоизоляционного слоя «Тилит», «Пенофол», необходимого для предотвращения замерзания (твердения) вещества в трубопроводе в течение заданного времени в случае приостановки его движения или времени до начала замерзания (твердения) вещества в трубопроводе

Расчет толщины теплоизоляционного слоя с целью предотвращения замерзания вещества при прекращении его движения проводят для трубопроводов наружным диаметром до 159 мм, имеющих малый запас аккумулированного тепла и расположенных на открытом воздухе или в не отапливаемых помещениях.

Исходными данными для расчета являются:

- температура вещества, определяющая его расчетные параметры (плотность, удельную теплоемкость, температуру замерзания, скрытую теплоту замерзания);
- температура окружающего воздуха;
- скорость ветра, влияющая на коэффициент теплоотдачи от поверхности тепловой изоляции к окружающему воздуху;
- внутренний диаметр и толщина стенки трубопровода;
- марка и толщина изделий «Тилит» или «Пенофол».

Время (в часах) до начала замерзания вещества в трубопроводе при известной толщине теплоизоляционного слоя определяют по формуле

$$Z = \frac{1}{3.6 \cdot K} \cdot \left(\frac{1}{2 \cdot \pi \cdot \lambda_{_{\text{HS}}}} \ln \frac{d_{_{\text{HS}}}}{d_{_{\text{Tp}}}} + \frac{1}{\pi \cdot d_{_{\text{HS}}} \cdot \alpha_{_{\text{H}}}} \right) \\ \cdot \left[\frac{2 \cdot (t_{_{\text{B}}} - t_{_{3}}) \cdot (V_{_{\text{B}}} p_{_{\text{B}}} C_{_{\text{B}}} + V_{_{\text{CT}}} p_{_{\text{CT}}} C_{_{\text{CT}}})}{t_{_{\text{B}}} + t_{_{3}} - 2 \cdot t_{_{\text{H}}}} + \frac{0.25 \cdot V_{_{\text{B}}} p_{_{\text{B}}} r_{_{\text{B}}}}{t_{_{3}} - t_{_{\text{H}}}} \right]$$
(47)

где: Z — заданное время хранения вещества в емкости или при остановке движения вещества в трубопроводе, ч.;

K- коэффициент, учитывающий дополнительный поток теплоты через изолированные опоры, фланцевые соединения и арматуру;

 t_3 — температура замерзания (твердения) вещества, °C;

 $t_{\rm H}$ – температура окружающей среды, °C;

 $V_{\rm B}-\,$ приведенный объем вещества к метру длины трубопровода, м $^3/$ м;

 $p_{\scriptscriptstyle \rm B}$ — плотность вещества, кг/м³;

 $C_{\rm B}$ — теплоемкость вещества (теплоносителя), находящегося внутри изолируемого объекта, кДж/(кг·°C);

 $V_{\rm CT}$ — приведенный объем стенки к метру длины трубопровода, м³/м;

 $p_{c_{\mathrm{T}}}$ — плотность материала стенки, кг/м³;

 C_{ct} — теплоемкость материала стенки, кДж/(кг·°С);

 $r_{\rm B}$ — скрытая теплота замерзания теплоносителя, кДж/кг;

- толщину теплоизоляции следует определять по формуле:

$$\begin{cases}
\ln \frac{d_{_{\text{M3}}}}{d_{_{\text{Tp}}}} = 2\pi\lambda_{_{\text{M3}}} \left(\frac{3.6 \cdot K \cdot Z}{\frac{2 \cdot (t_{_{\text{B}}} - t_{_{3}}) \cdot (V_{_{\text{B}}} p_{_{\text{B}}} C_{_{\text{B}}} + V_{_{\text{CT}}} p_{_{\text{CT}}} C_{_{\text{CT}}})}{t_{_{\text{B}}} + t_{_{3}} - 2 \cdot t_{_{\text{H}}}} + \frac{0.25 \cdot V_{_{\text{B}}} p_{_{\text{B}}} r_{_{\text{B}}}}{t_{_{3}} - t_{_{\text{H}}}} - \frac{1}{\pi \cdot d_{_{\text{M3}}} \cdot \alpha_{_{\text{H}}}} \right) \\
\delta_{_{\text{M3}}} = \frac{d_{_{\text{M3}}} - d_{_{\text{Tp}}}}{2}
\end{cases} (48)$$

Математическая сложность расчета толщины теплоизоляционного слоя $\delta_{\rm из}$ заключается в том, что значение диаметра всей изоляционной конструкции $d_{\rm из}$, которая включает первую величину неизвестен. Логарифмическое уравнение можно решить числено, подставив некоторую величину, например:

Для определения толщины теплоизоляционного слоя заданной или нормированной плотности теплового потока для цилиндрической поверхности:

$$\begin{cases}
\ln \frac{d_{\text{H3}}}{d_{\text{Tp}}} = 2\pi \lambda_{\text{H3}} \cdot \left(\frac{t_{\text{B}} - t_{\text{H}}}{q} - \frac{1}{\pi d_{\text{H3}} \alpha_{\text{H}}}\right) \\
\delta_{\text{H3}} = \frac{d_{\text{Tp}}}{2} \cdot \left(\frac{d_{\text{H3}}}{d_{\text{Tp}}} - 1\right)
\end{cases}$$
(49)

Нахождения толщины теплоизоляции.

Поскольку $d_{_{\rm H3}}$ неизвестно, для реализации расчета целесообразно использовать метод последовательных приближений, суть которого заключается в следующем. Задаваясь начальным значением толщины изоляции $\delta_{_{0\! +\! 3}}$, м, определяемой точностью расчета, производят с помощью последовательных шагов 1, 2, 3,... і для толщины изоляции $\delta_1=\delta_{01}$; $\delta_2=\delta_{02};\ \delta_3=\delta_{03};...\ \delta_i=\delta_{0i}$ вычисление линейной плотности тепловых потоков q_1 , q_2 q_3 ,;... q_i . На каждом шаге вычислений і производится сравнение q_i с заданным значением плотности теплового потока q_i . При выполнении условия $q_i-q_3\leq 0$ вычисления заканчиваются, а найденная величина является искомой.

для стального трубопровода с водой - по формуле

$$Z = \frac{2326}{K} \cdot \left(\frac{1}{2 \cdot \pi \cdot \lambda_{\text{HS}}} \ln \frac{d_{\text{HS}}}{d_{\text{TD}}} + \frac{1}{\pi \cdot d_{\text{HS}} \cdot \alpha_{\text{H}}} \right) \cdot \left[\frac{t_{\text{B}} (V_{\text{B}} + 0.9 V_{\text{CT}})}{t_{\text{B}} - t_{\text{H}}} + \frac{10 V_{\text{B}}}{t_{\text{H}}} \right]$$
(50)

$$\left\{ \ln \frac{d_{\text{M3}}}{d_{\text{Tp}}} = 2\pi \lambda_{\text{M3}} \left(\frac{3.6 \cdot K \cdot Z}{\frac{2326t_{\text{B}}(V_{\text{B}} + 0.9V_{CT})}{t_{\text{B}} - 2 \cdot t_{\text{H}}} + \frac{10V_{\text{B}}}{t_{\text{H}}}} - \frac{1}{\pi \cdot d_{\text{M3}} \cdot \alpha_{\text{H}}} \right) \tag{51} \right\}$$

Температуру окружающего воздуха следует принимать как среднюю наиболее холодной пятидневки с обеспеченностью 0,98 в соответствии с СП

131.13330.2012. Свод правил. Строительная климатология. Актуализированная редакция СНиП 23-01-99*или по данным местной метеостанции для конкретного населенного пункта. Коэффициент *К*, учитывающий дополнительные потери на опорах, следует принимать по таблице A.1

Коэффициент теплоотдачи от наружной поверхности теплоизоляционной конструкции к окружающему воздуху рекомендуется принимать равным 29 Вт/(м²-°С).

Время, в течение которого тепловая изоляция из изделий «Тилит» или утеплителя «Пенофол» предотвращает замерзание холодной воды с начальной температурой 5 °C и 10 °C при аварийной остановке ее движения в зимнее время в трубопроводах, расположенных в регионах со средней температурой наиболее холодной пятидневки не ниже минус 30 °C, рассчитывается с помощью программы «LIT THERMO ENGINEER. Инженерные коммуникации». Расчетная программа соответствует СП61.13330.2012 «Тепловая изоляция оборудования и трубопроводов. Актуализированная редакция СНиП 41-03-2003» ****

А.3.5. Определение толщины теплоизоляционного слоя «Тилит», «Пенофол» для предотвращения конденсации влаги на внутренних поверхностях воздуховодов

Расчет толщины теплоизоляционного слоя из изделий «Тилит» и утеплителя «Пенофол» проводят для воздуховодов, расположенных на открытом воздухе и транспортирующих воздух с температурой выше температуры окружающей среды.

Температура на внутренней поверхности воздуховода должна быть выше температуры точки росы для исключения конденсации влаги из транспортируемого воздуха.

При необходимости точного определения, температуру точки росы $\,t_p\,$ можно определить по формуле:

$$t_p = \frac{233,77 \cdot \ln P_{\Pi} + 115,72}{16,57 - 0,997 \cdot \ln P_{\Pi}}$$
(52)

Парциальное давление водяного пара P_{Π} определяют по формуле:

$$P_{\Pi} = \frac{\varphi \cdot P_{\rm H}}{100} \quad (53)$$

где: $P_{\rm H}$ — парциальное давление насыщенного водяного пара, кПа, которое определяют по формуле:

 φ — относительная влажность воздуха, %;

$$P_{\rm H} = \exp \frac{16,57 \cdot t_{\rm H} - 115,72}{223,77 + 0,997 \cdot t_{\rm H}} \quad (54)$$

где: $t_{\rm H}$ – температура окружающей среды, °C;

Толщину теплоизоляционного слоя определяют:

для воздуховодов с плоскими стенками и цилиндрических воздуховодов диаметром 2 м и более по формуле

$$\delta_{\text{\tiny M3}} = \left[\frac{t_{\text{\tiny BH}} - t_{\text{\tiny H}}}{\alpha_{\text{\tiny RH}} \cdot (t_{\text{\tiny R}} - t_{\text{\tiny RH}})} - \frac{1}{\alpha_{\text{\tiny H}}} \right] (55)$$

- для цилиндрических газоходов (воздуховодов) диаметром менее 2 м по формуле:

$$\begin{cases}
\ln \frac{d_{\text{M3}}}{d_{\text{Tp}}} = 2\lambda_{\text{M3}} \left[\frac{t_{\text{BH}} - t_{\text{H}}}{\alpha_{\text{B}} \cdot d_{\text{Tp}}^{\text{BH}}(t_{\text{B}} - t_{\text{BH}})} - \frac{1}{\alpha_{\text{H}} \cdot d_{\text{M3}}} \right] \\
\delta_{\text{M3}} = \frac{d_{\text{M3}} - d_{\text{Tp}}}{2}
\end{cases} (56)$$

где δ - толщина слоя, м;

 λ - коэффициент теплопроводности материала слоя, Вт/(м·°С).

Сопротивление теплопередаче Ro, кв.м-°C/Вт, ограждающей конструкции следует определять по формуле:

$$R_o = \frac{1}{\alpha_{\rm B}} + R_{\rm K} + \frac{1}{\alpha_{\rm H}} \quad (57)$$

где $\alpha_{\rm B}$ - коэффициент теплоотдачи внутренней поверхности ограждающей конструкции, Вт/(кв.м·°С);

 $\alpha_{\rm H}$ - коэффициент теплоотдачи наружной поверхности ограждающей конструкции, Вт/(кв.м-°С); $R_{\rm K}$ - термическое сопротивление ограждающей конструкции, кв.м-°С/Вт.

Решения этой системы уравнений формула (49)

Коэффициент теплоотдачи пара к стенке паропровода следует определять по обобщенным критериальным формулам, приведенным в справочной литературе по теплопередаче, учитывающим скорость движения, размеры объекта и теплофизические свойства вещества.

$$\delta_{\text{\tiny M3}} = \lambda_{\text{\tiny M3}} \left(\sum_{i=1}^{n} R_i - \frac{1}{\alpha_{\text{\tiny H}}} \right) (58)$$

для цилиндрических воздуховодов диаметром менее 2 м по формуле

$$\delta_{\text{H3}} = \frac{d_{\text{TP}}}{2} \left(exp \left\{ 2\pi \lambda_{\text{H3}} \left[R^l - \frac{1}{\alpha_{\text{H}} \pi (d_{\text{TP}} + 2) \delta_{\text{H3}}} \right] \right\} - 1 \right) (59)$$

Величины R и R' в зависимости от исходных условий определяют:

для воздуховодов с плоскими стенками и цилиндрических воздуховодов диаметром 2 м и более по формуле

$$\sum_{i=1}^{n} R_i = \frac{t_{\text{BH}}^{\text{CT}} t_{\text{BH}} - t_{\text{H}}}{\alpha_{\text{H}} (t_{\text{B}} - t_{int})}$$
 (60)

для цилиндрических воздуховодов диаметром менее 2 м по формуле

$$\sum_{i=1}^{n} R_{i}^{L} = \frac{t_{\mathrm{BH}}^{\mathrm{CT}} - t_{\mathrm{H}}}{\alpha_{\mathrm{H}} \pi d_{\mathrm{TD}}^{\mathrm{eff}}(t_{\mathrm{B}} - t_{int})}$$
 (61)

Коэффициент теплоотдачи от транспортируемого воздуха к внутренней поверхности изолируемого воздуховода определяют по формуле

$$\alpha_{\rm B} = 0.018 \left(\frac{\omega_{\rm B} d_{\rm 3KB}}{V_{\rm B}}\right)^{0.8} \frac{\lambda_{\rm B}}{d_{\rm 3KB}}$$
 (62)

Значения эквивалентных диаметров определяют:

для воздуховодов с плоскими стенками и цилиндрических воздуховодов диаметром 2 м и более по формуле

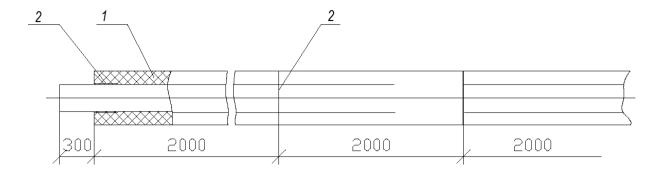
$$d_{9KB}^{\Pi} = 2 \frac{H \cdot B}{H + B}$$
 (63)

Температуру окружающего воздуха следует принимать как среднюю наиболее холодной пятидневки с обеспеченностью 0,98 в соответствии с СП 131.13330.2012. Свод правил. Строительная климатология. Актуализированная редакция СНиП 23-01-99* или по данным местной метеостанции для конкретного населенного пункта.

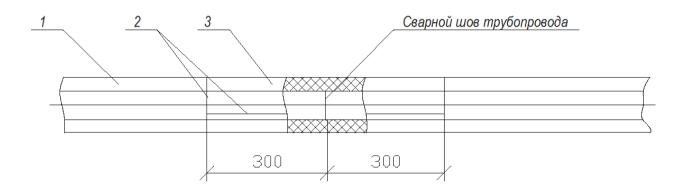
Коэффициент теплоотдачи от наружной поверхности теплоизоляционной конструкции к окружаю щему воздуху рекомендуется принимать равным 29 Вт/(м².°С).

**Программа «LIT THERMO ENGINEER. Инженерные коммуникации. » Расчетная программа соответствует СП61.13330.2012 «Тепловая изоляция оборудования и трубопроводов. Актуализированная редакция СНиП 41-03-2003».

Целью решения задач в программе «LIT THERMO ENGINEER. Инженерные коммуникации» является подбор необходимой толщины утеплителя для достижения нормируемых величин тепловых потерь или для предотвращения нежелательных последствий (выпадение конденсата, защита от замерзания и т.д.). Главной количественно-качественной величиной является мера теплового потока с погонного метра (когда речь идет о трубопроводах) или квадратного (речь идет о плоских поверхностях, емкостях), а уже в зависимости от него определяют дальнейшие значения. Нормируемые величины теплового потока установлены в п.6 СПб1.13330.2012 «Тепловая изоляция оборудования и трубопроводов. Актуализированная редакция СНиП 41-03-2003». Программа прошла государственную регистрацию программ для ЭВМ, получен сертификат соответствия СПб1.13330.2012 «Тепловая изоляция оборудования и трубопроводов. Актуализированная редакция СНиП 41-03-2003» в Центре Сертификации Программных Средств в

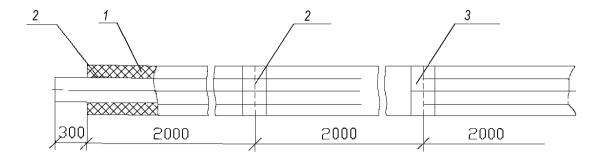

Загрузить программу можно по ссылке http://zavodlit.ru/Программа распространяется как бесплатное (Freeware) приложение (в том числе и в качестве Библиотеки КОМПАСЗD)

строительстве и рекомендована к применению.

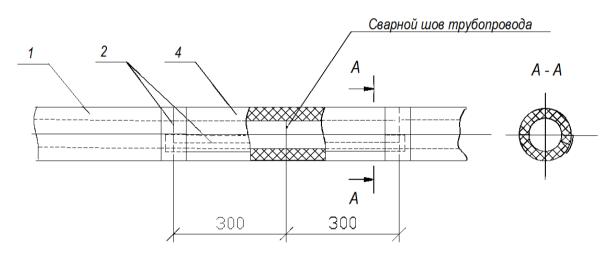

Приложение Б.

Рисунки по монтажу изделий «Тилит», «Пенофол»

Puc. 1. Тепловая изоляция несмонтированного трубопровода с положительными температурами теплоизоляционными трубками «Тилит»

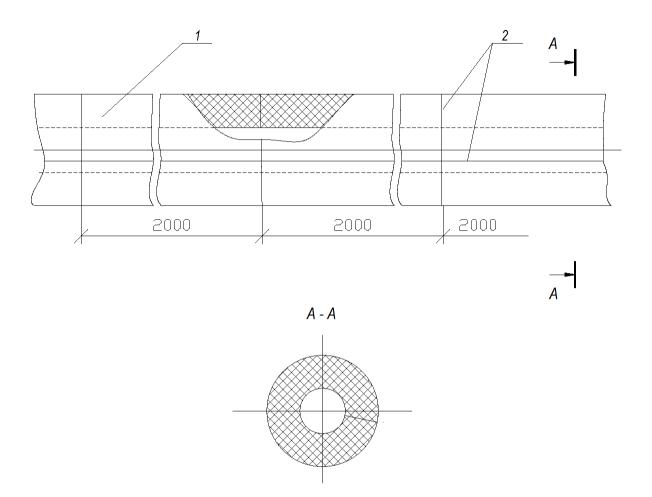


Изоляция сварного шва трубопровода вставкой из теплоизоляционной трубки «Тилит»

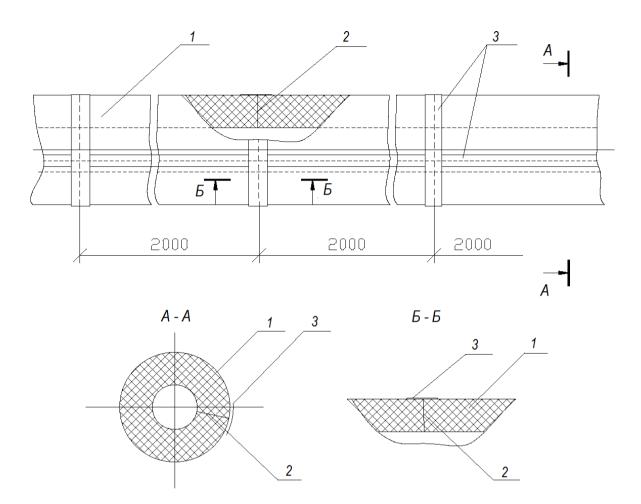


- 1. Теплоизоляционная трубка «Тилит Супер», «Тилит Блэк Стар»
- 2. Клей «Тилит»
- 3. Вставка из трубки «Тилит Супер», «Тилит Блэк Стар»

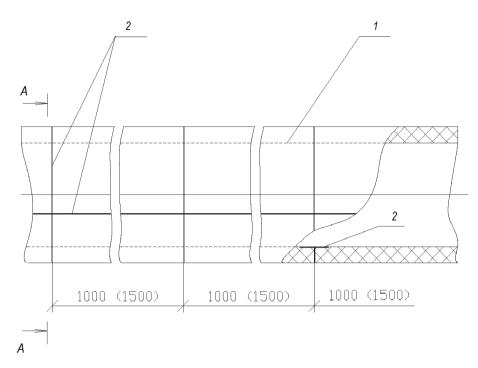
Puc. 2. Тепловая изоляция несмонтированного трубопровода с положительными температурами теплоизоляционными трубками «Тилит» (вариант с проклейкой швов)

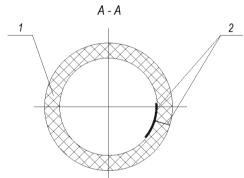


Изоляция сварного шва трубопровода вставкой из теплоизоляционной трубки «Тилит»

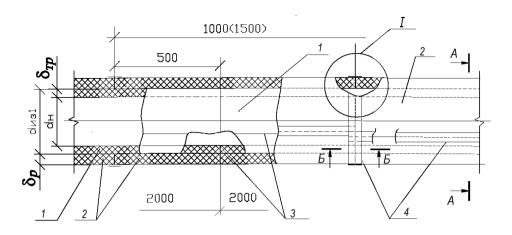

- 1. Теплоизоляционная трубка «Тилит Супер», «Тилит Блэк Стар»
 - 2. Клей «Тилит»
 - 3. Лента армированная самоклеящаяся «Тилит»
 - 4. Вставка из трубки «Тилит Супер», «Тилит Блэк Стар»

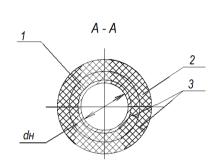
Puc. 3. Тепловая изоляция несмонтированного трубопровода с положительными температурами теплоизоляционными трубками «Тилит» с продольным разрезом

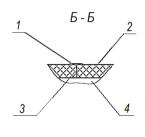

- 1. Теплоизоляционная трубка «Тилит Супер», «Тилит Блэк Стар» 2. Клей «Тилит»


Рис. 4. Тепловая изоляция трубопроводов трубками «Тилит» с проклейкой швов лентой армированной самоклеящейся «Тилит»

- 1. Теплоизоляционная трубка «Тилит Супер», «Тилит Блэк Стар»
- 2. Клей «Тилит»
- 3. Лента армированная самоклеящаяся «Тилит»

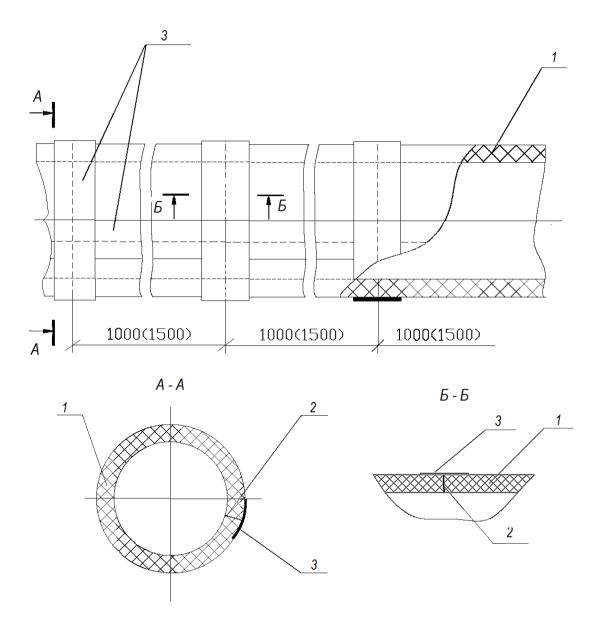

Рис. 5. Тепловая изоляция несмонтированного трубопровода с положительными температурами рулонами (листами) «Тилит», «Пенофол»





- 1. Рулоны (листы) «Тилит», «Пенофол» 2. Клей «Тилит»

Рис. 6. Тепловая изоляция трубопроводов в два слоя-трубками и рулонами (листами) «Тилит», «Пенофол» в качестве наружного слоя



dн – наружный диаметр трубопровода
 duз – наружный диаметр первого слоя
 бтр – толщина трубки «Тилит»
 бр – толщина рулонов «Тилит», «Пенофол»

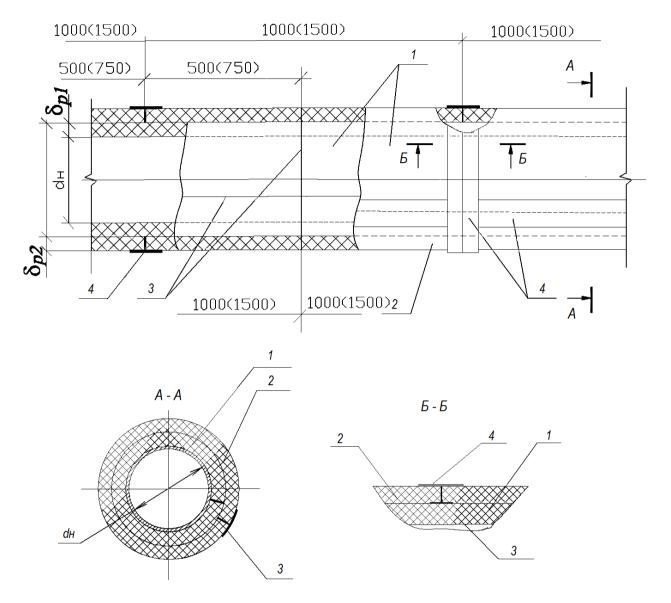
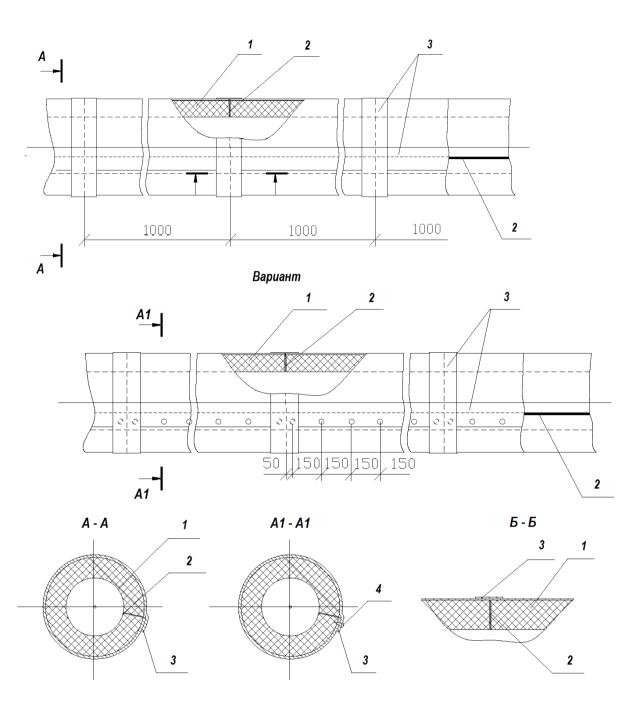

- 1. Теплоизоляционная трубка «Тилит Супер», «Тилит Блэк Стар»
- 2. Рулоны (листы) «Тилит», «Пенофол»
- 3. Клей «Тилит»
- 4. Лента армированная самоклеящаяся «Тилит», лента алюминиевая самоклеящаяся «ЛАС»

Рис. 7. Тепловая изоляция трубопроводов с отрицательными температурами рулонами (листами) «Тилит Супер СК» (с клеевым слоем), «Пенофол» тип С (с клеевым слоем)

- 1. Самоклеящиеся рулоны (листы) «Тилит», «Пенофол»
- 2. Клей «Тилит» (клеевое соединение швов)
- 3. Лента армированная самоклеящаяся «Тилит», лента алюминиевая самоклеящаяся «ЛАС»

Рис. 8. Тепловая изоляция трубопроводов с отрицательными температурами рулонами (листами) «Тилит Супер СК» (с клеевым слоем), «Пенофол» тип С (с клеевым слоем) в два слоя


dн — наружный диаметр трубопровода dus1 — наружный диаметр изоляции первого слоя

δρ1 – толщина рулонов (листов) «Тилит», «Пенофол» первого слоя

δр2 – толщина рулонов «Тилит», «Пенофол» второго слоя

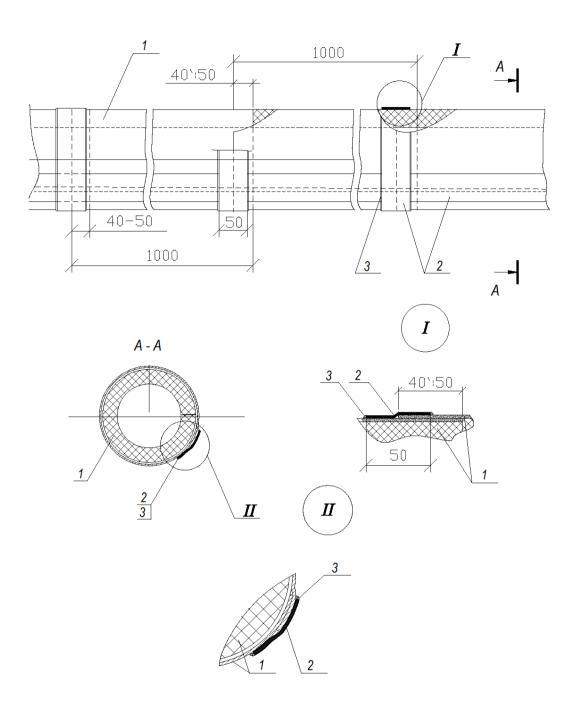

- 1. Самоклеящиеся рулоны (листы) «Тилит», «Пенофол»
- 2. Рулоны (листы) «Тилит», «Пенофол»
- 3. Клей «Тилит» (клеевое соединение швов)
- 4. Лента армированная самоклеящаяся «Тилит», лента алюминиевая самоклеящаяся «ЛАС»

Рис. 9. Тепловая изоляция трубопроводов трубками и рулонами (листами) «Тилит» с гибким покрывным материалом «ТИТАНФЛЕКС» расположенными в помещении

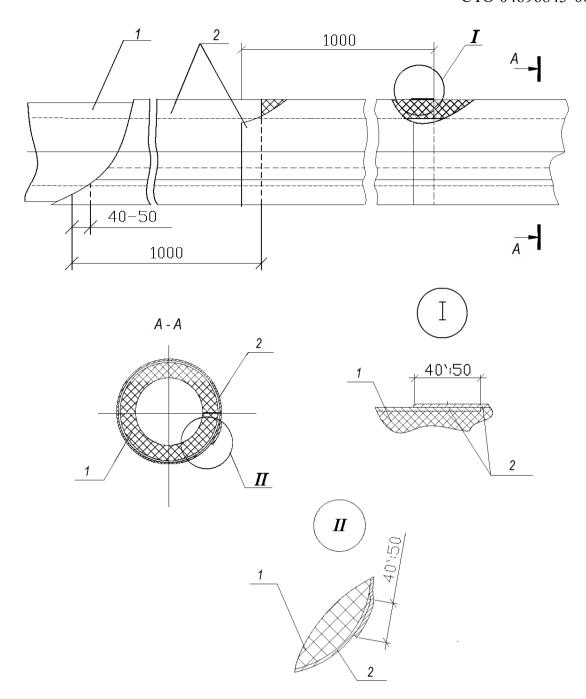
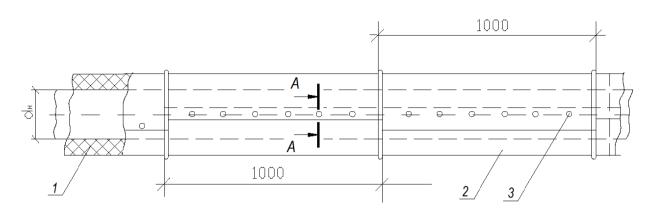

- 1. Трубки и рулоны (листы) «Тилит» гибким покрывным материалом «ТИТАНФЛЕКС»
- 2. Клей «Тилит» (клеевое соединение швов)
- 3. Лента алюминиевая самоклеящаяся прочная «ЛАС-П»
- 4. Заклепка металлическая

Рис. 10. Тепловая изоляция трубопроводов трубками и рулонами (листами) «Тилит» с гибким покровным материалом «Армофол ТК» расположенными на открытом воздухе

- 1. Трубки и рулоны (листы) «Тилит» с покрытием «ТИТАНФЛЕКС», «Армофол ТК»
- 2. Лента алюминиевая самоклеящаяся прочная «ЛАС-П», лента алюминиевая самоклеящаяся «ЛАС», лента алюминиевая самоклеящаяся армированная «ЛАС-А»
- 3. Герметик

Рис. 11. Тепловая изоляция трубопроводов изделиями «Тилит» в конструкции с гибким покровным материалом «Армофол ТК» (самоклеящимся)



- 1. Теплоизоляционный слой из изделий «Тилит» по рис. 1-8
- 2. Гибкий покровный материал «ТИТАНФЛЕКС» самоклеящийся

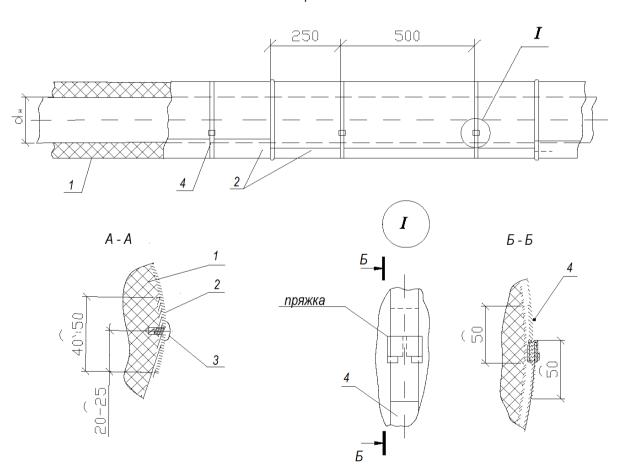
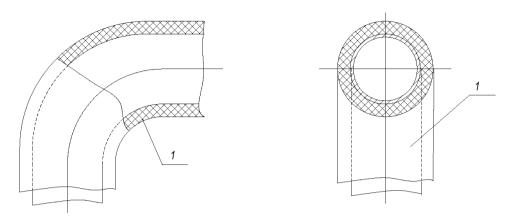

Примечание: При расположении на открытом воздухе швы следует проклеивать лентой алюминиевой самоклеящейся прочной «ЛАС-П»

Рис. 12. Конструкция металлического покрытия по теплоизоляционному слою из изделий «Тилит» (прямые участки)

А. Крепление саморезами


Б. Крепление бандажами

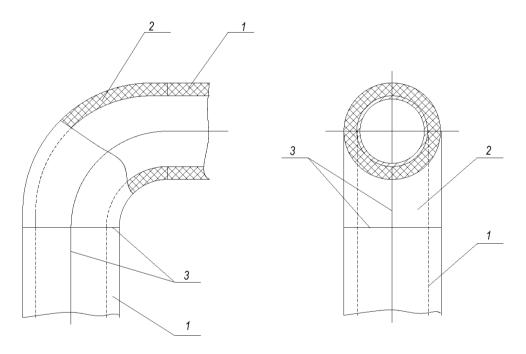
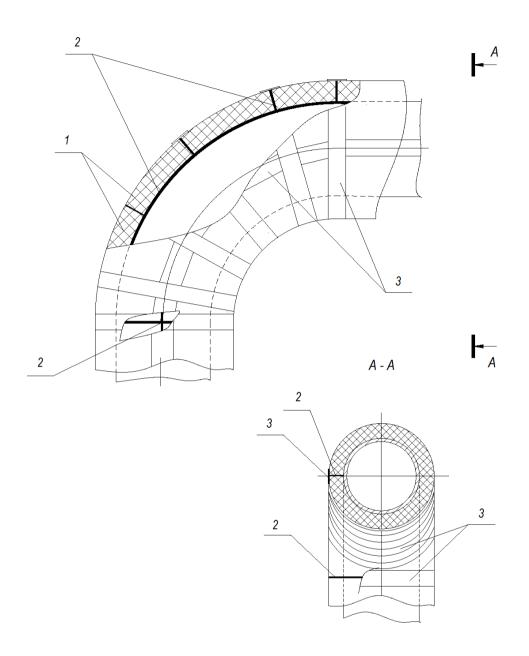

- 1. Теплоизоляционный слой из изделий «Тилит»
- 2. Элементы металлического покрытия
- 3. Винты саморезы
- 4. Бандаж с пряжкой

Рис. 13. Тепловая изоляция отвода трубопровода

А. Теплоизоляция отвода несмонтированного трубопровода трубками «Тилит» без продолбного разъема



Б. Теплоизоляция отвода смонтированного трубопровода готовыми углами изделий «Тилит» в 90′′

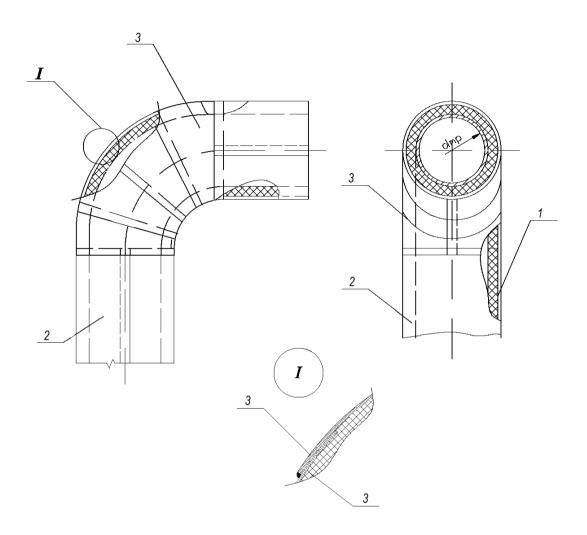
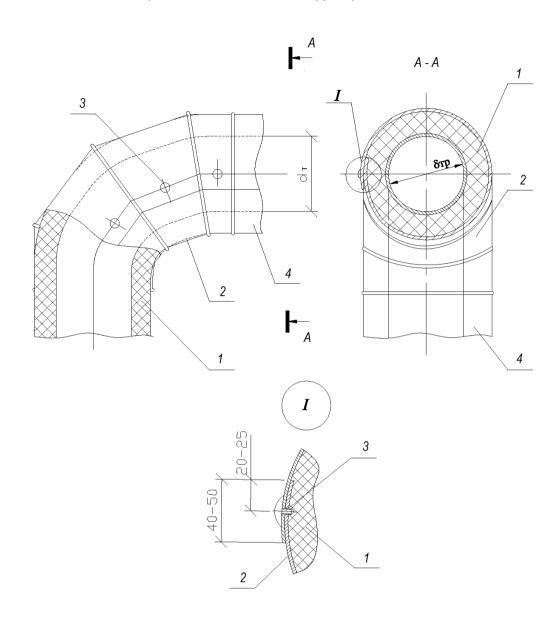

- 1. Трубка «Тилит» 2. Теплоизоляционный угол «Тилит» в 90′′
- 3. Клей «Тилит[°]»

Рис. 14. Тепловая изоляция отвода трубопровода углами из рулонного материала «Тилит» с проклейкой швов лентой самоклеящейся «Тилит Супер СК»

- 1. Сегменты рулонов (листов) «Тилит» 2. Клей «Тилит»
- 3. Лента самоклеящаяся «Тилит Супер СК»


Рис. 15. Тепловая изоляция отвода трубопровода с применением углов гибкого покровного материала «ТИТАНФЛЕКС»

- 1. Теплоизоляционный слой из изделий «Тилит»
- 2. Гибкий покровный материал «ТИТАНФЛЕКС»
- 3. Угол из материала «ТИТАНФЛЕКС»

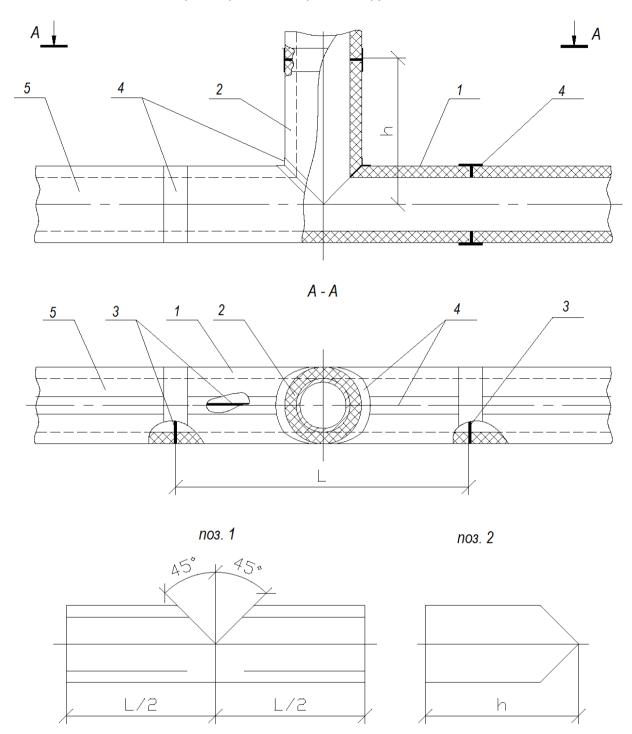
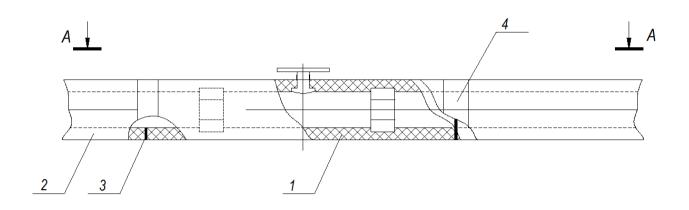
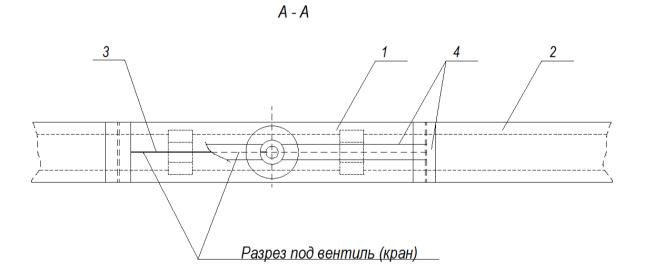

Примечание. При расположении на открытом воздухе швы отвода следует проклеивать герметиком.

Рис. 16. Металлическое покрытие изоляции отвода трубопровода

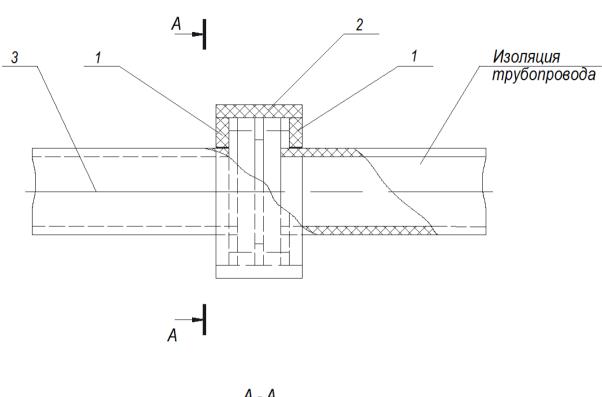
- 1. Теплоизоляционный слой из изделий «Тилит»
- 2. Элементы металлического покрытия отвода
- 3. Саморезы или заклепки
- 4. Металлическое покрытие прямых участков

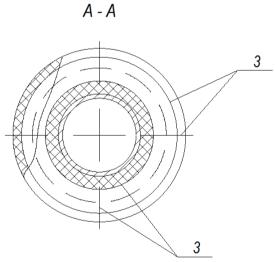

Рис. 17. Тепловая изоляция равнопроходного тройника трубками «Тилит»



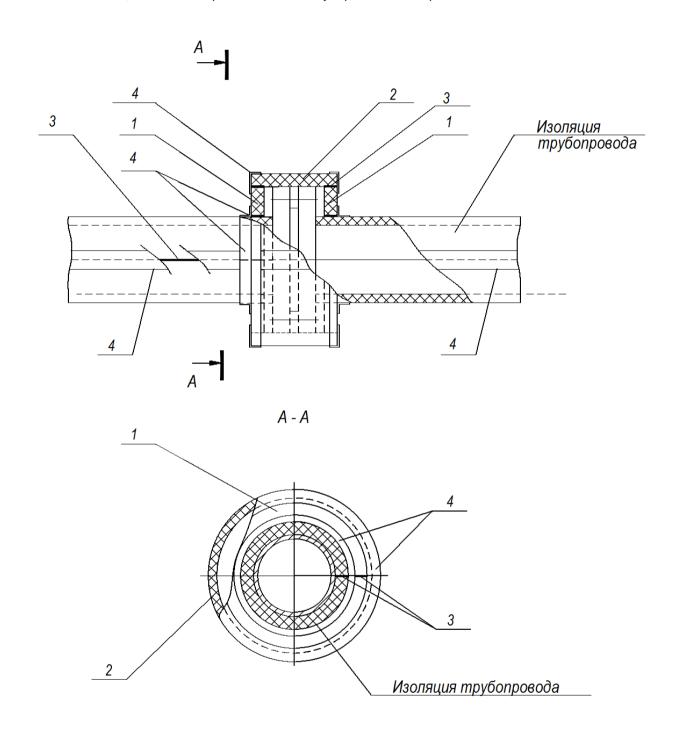
- 1. Элемент изоляции тройника из трубки «Тилит» длиной L 2. Элемент изоляции тройника из трубки «Тилит» длиной h 3. Клей «Тилит» (клеевое соединение швов)

- 4. Лента армированная самоклеящаяся «Тилит»
- 5. Изоляция трубопровода


Рис. 18. Тепловая изоляция муфтовой и приварной арматуры трубками «Тилит» без покровного материала и с гибким покровным материалом «ТИТАНФЛЕКС»



- 1. Вставка из трубки «Тилит» с разрезом под вентиль 2. Теплоизоляция трубопровода трубками «Тилит»
- 3. Клей «Тилит» (клеевое соединение швов)
- 4. Лента армированная самоклеящаяся «Тилит», лента алюминиевая самоклеящаяся прочная «ЛАС-П»


Рис. 19. Несъемная тепловая изоляция фланцевого соединения листовым изоляционным материалом «Тилит»

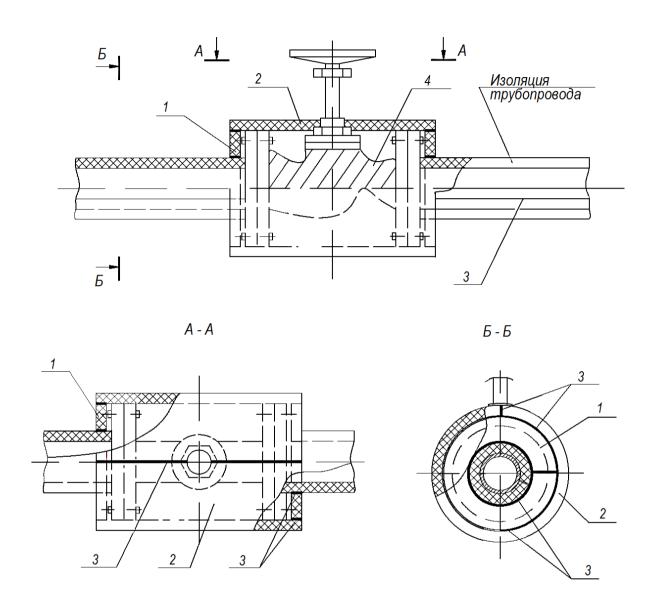
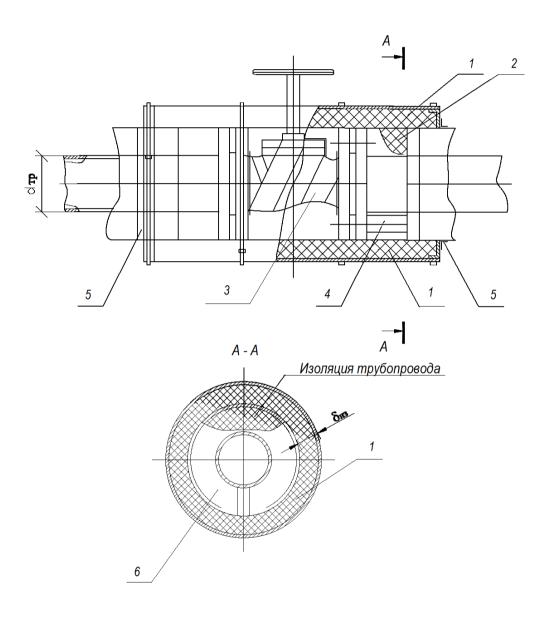

- 1. Кольцо из рулонного (листового) материала «Тилит»
- 2. Полоса из рулонного (листового) материала «Тилит»
- 3. Клеевое соединение элементов теплоизоляции фланцевого соединения и трубопровода (клей «Тилит»)

Рис. 20. Несъемная тепловая изоляция фланцевого соединения листовым изоляционным материалом «Тилит Супер Ал», «Пенофол»

- 1. Кольцо из рулонного (листового) материала «Тилит Супер Ал», «Пенофол»
- 2. Полоса из рулонного (листового) материала «Тилит Супер Ал», «Пенофол»
- 3. Клеевое соединение элементов теплоизоляции фланцевого соединения и трубопровода (клей «Тилит»)
- 4. Лента алюминиевая самоклеящаяся «ЛАС» или лента алюминиевая самоклеящаяся армированная «ЛАС-А»

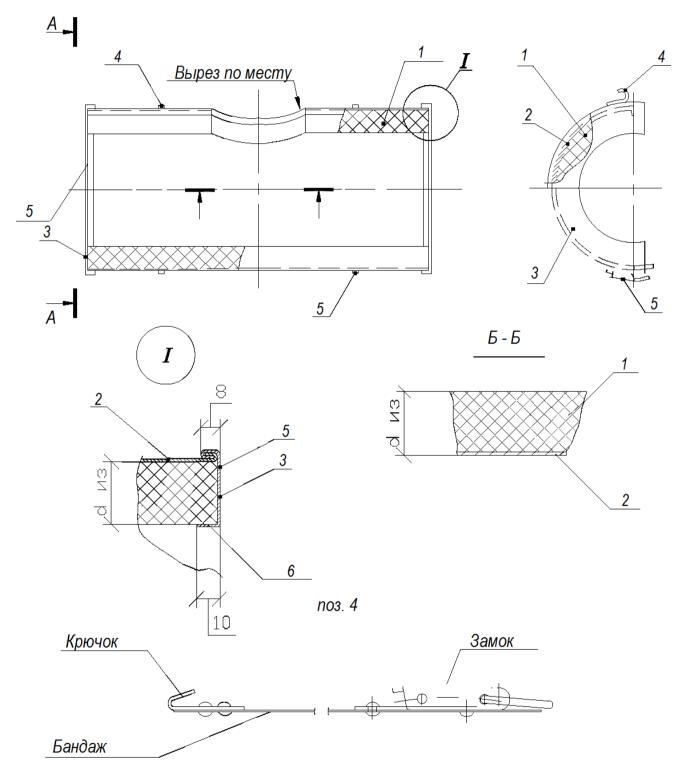
Рис. 21. Несъемная тепловая изоляция фланцевой арматуры листовым изоляционным материалом «Тилит»



- 1. Кольцо из рулонного (листового) материала «Тилит», «Пенофол»
- 2. Прямоугольный элемент изоляции корпуса арматуры из рулонного (листового) материала «Тилит», «Пенофол»
- 3. Клеевое соединение элементов (клей «Тилит»)
- 4. Лента армированная самоклеящаяся «Тилит», лента алюминиевая самоклеящаяся «ЛАС», лента алюминиевая самоклеящаяся армированная «ЛАС-А»

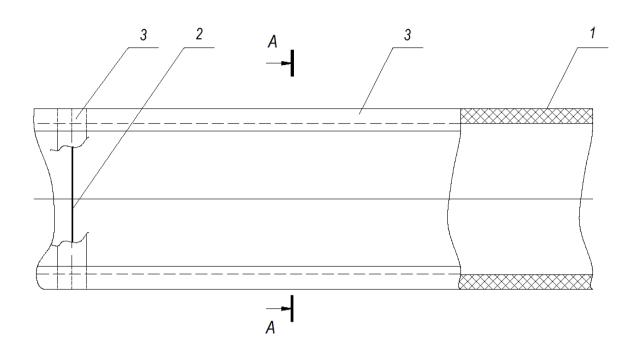
Примечание: При применении материалов самоклеящихся с алюминиевым покрытием швы следует проклеить как показано на рис. 20

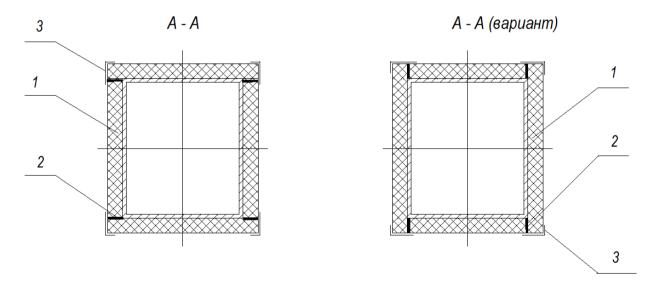
Рис. 22. Тепловая изоляция фланцевой соосной арматуры полносборной


конструкцией с вкладышем из рулонов (листов) «Тилит» с металлическим кожухом.

- 1. Полносборная конструкция с вкладышем изделий «Тилит» с покрытием из алюминиевого листа (рис.23)
- 2. Вставка изделий «Тилит»
- 3. Обертка лентой самоклеящейся «Тилит Супер СК»
- 4. Проклейка шва вставки лентой армированной самоклеящейся «Тилит»
- 5. Проклейка швов конструкции лентой алюминиевой самоклеящейся «ЛАС», лентой алюминиевой самоклеящейся армированной «ЛАС-А», лентой алюминиевой самоклеящейся прочной «ЛАС-П»
- 6. Отделка торца изоляции трубопровода (диафрагма)

Рис. 23. Конструкция теплоизоляционная полносборная (полуфутляр) с вкладышем

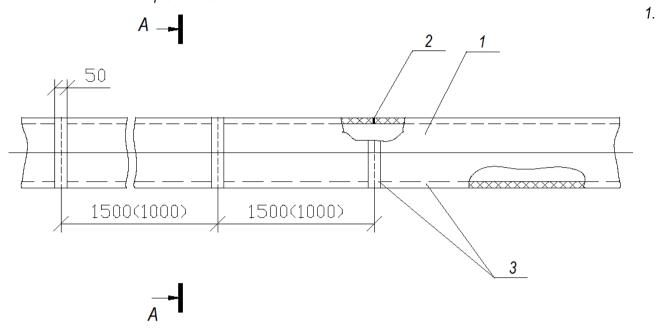

из рулонных изделий «Тилит» с металлическим кожухом

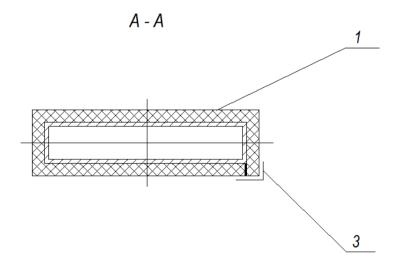


- 1. Теплоизоляционный вкладыш из самоклеящегося рулона (листа) «Тилит»
- 2. Стенка боковая металлического кожуха
- 3. Стенка торцевая
- 4. Бандаж с замком и крючком
- 5. Клей «Тилит»

Рис. 24. Изоляция воздуховодов систем вентиляции и кондиционирования

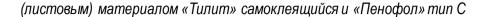
самоклеящимся рулонным материалом «Тилит Блэк Стар», «Пенофол»

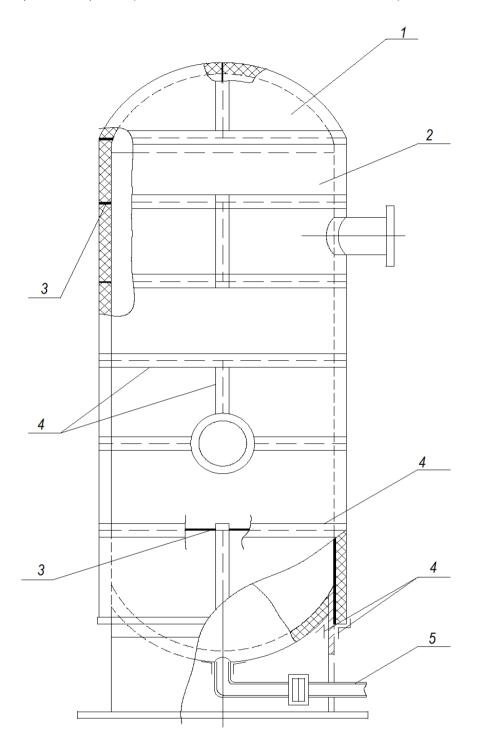




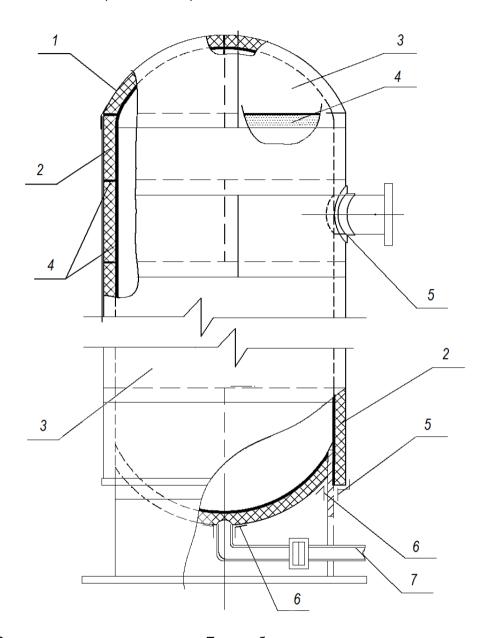
- 1. Рулонный (листовой) материал «Тилит Блэк Стар Дакт», «Пенофол» тип С
- 2. Клей «Тилит»
- 3. Лента армированная самоклеящаяся «Тилит» (черная), лента алюминиевая самоклеящаяся «ЛАС», лента алюминиевая самоклеящаяся армированная «ЛАС-А»

Рис. 25. Изоляция воздуховодов систем вентиляции и кондиционирования


самоклеящимся рулонным материалом «Тилит Блэк Стар Дакт Ал», «Пенофол тип С»

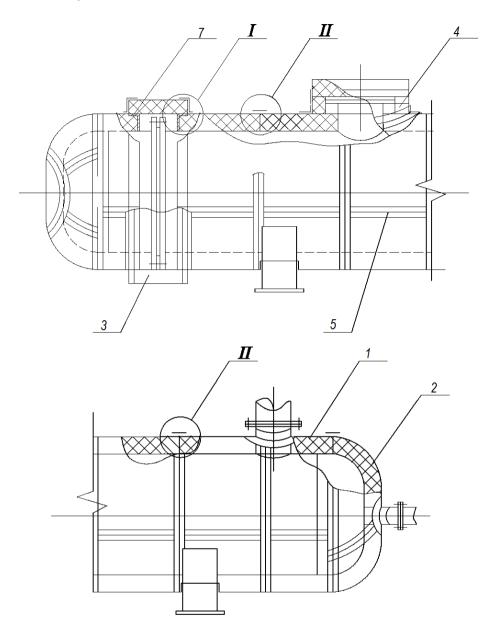


Рулонный (листовой) материал «Тилит Блэк Стар Дакт Ал», «Пенофол» тип С


- 2. Клей «Тилит»
- 3. Лента алюминиевая самоклеящаяся «ЛАС», лента алюминиевая самоклеящаяся армированная «ЛАС-А»

- 1. Сегмент самоклеящегося рулона (листа) «Тилит» или «Пенофола» тип С
- 2. Листы самоклеящегося рулонного материала «Тилит» или «Пенофола» тип С
- 3. Клей «Тилит»
- 4. Лента самоклеящаяся «Тилит Супер СК» или лента алюминиевая самоклеящаяся «ЛАС» (для проклейки швов) материала «Пенофол» тип С
- 5. Изоляция патрубка и фланцевого соединения изделиями «Тилит».

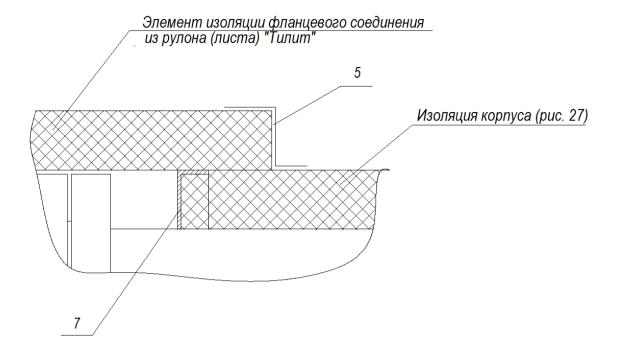
Рис. 27. Конструкция тепловой изоляции вертикального annapama рулонным (листовым) материалом «Тилит» самоклеящийся и «Пенофол» тип С с гибким покровным материалом «ТИТАНФЛЕКС»

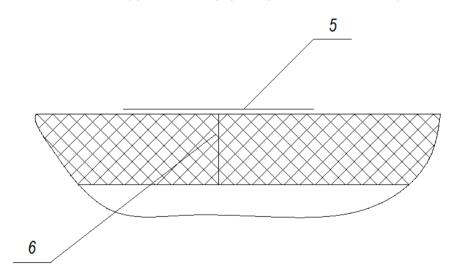


- 1. Сегмент рулонного материала «Тилит» без клеевого слоя
- 2. Листы из рулонного материала «Тилит» без клеевого слоя
- 3. Гибкий покровный материал «ТИТАНФЛЕКС»
- 4. Клей «Тилит»
- 5. Лента армированная самоклеящаяся «Тилит», лента Алюминиевая самоклеящаяся прочная «ЛАС-П»
- 6. Лента самоклеящаяся «Тилит Супер СК»
- 7. Изоляция патрубка и фланцевого соединения изделиями «Тилит».

Примечание. При расположении на открытом воздухе швы покрытия следует проклеивать герметиком

Рис. 28. Конструкция тепловой изоляции горизонтального annapama рулонным (листовым) материалом «Тилит Блэк Стар Дакт Ал» (самоклеящийся),


«Пенофол» тип С


- 1. Элементы из самоклеящегося рулона (листа) «Тилит Блэк Стар Дакт Ал», «Пенофола» тип С
- 2. Сегменты изоляции днища из самоклеящегося рулона (листа) «Тилит Блэк Стар Дакт Ал», «Пенофола» тип С
- 3. Изоляция фланцевого соединения
- 4. Изоляция люка
- 5. Лента алюминиевая самоклеящаяся «ЛАС» (для проклейки швов)
- 6. Клей «Тилит»
- 7. Диафрагма (отдела торца изоляции)

Узлы I и II на рис. 29

Узел I. Изоляция фланцевого соединения горизонтального annapama

Узел II. Стык смежных рулонов на корпусе горизонтального annapama

Позиции 5,6 и 7 указаны на рис. 28

Puc. 30. Тепловая изоляция горизонтального annapama листами «Тилит» в конструкции с металлическим покровным слоем и съемным полуфутляром с креплением бандажами для изоляции фланцевого соединения

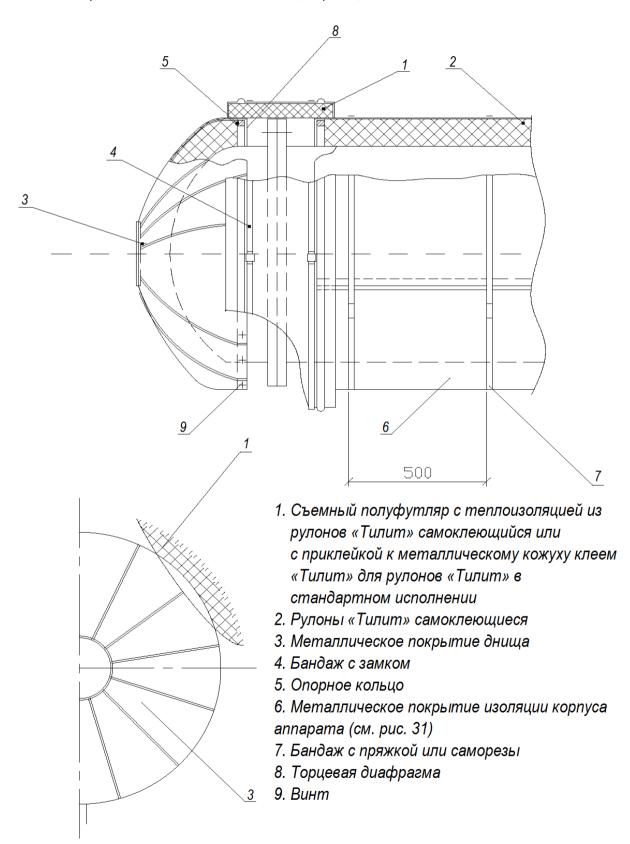
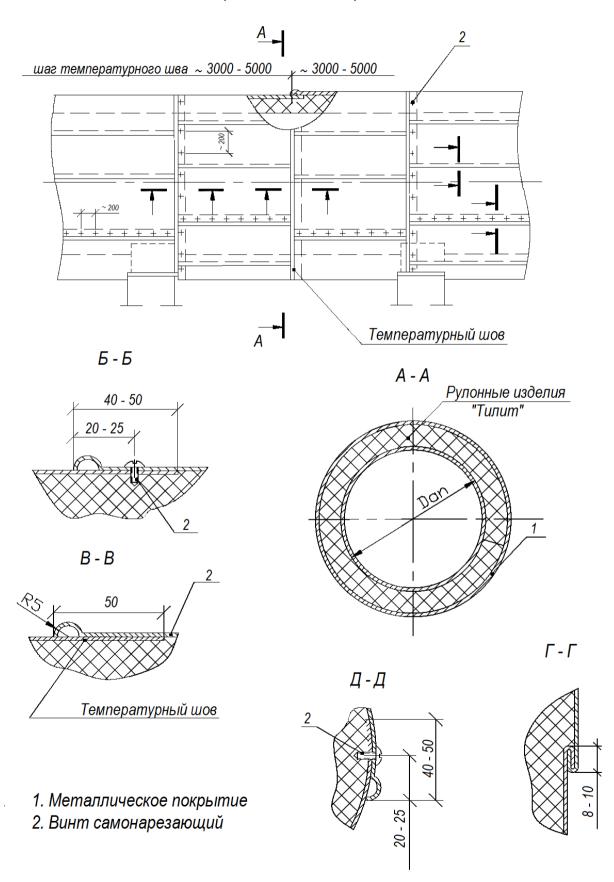



Рис. 31. Конструкция металлического покрытия по теплоизоляционному слою из изделий «Тилит» для горизонтального annapama

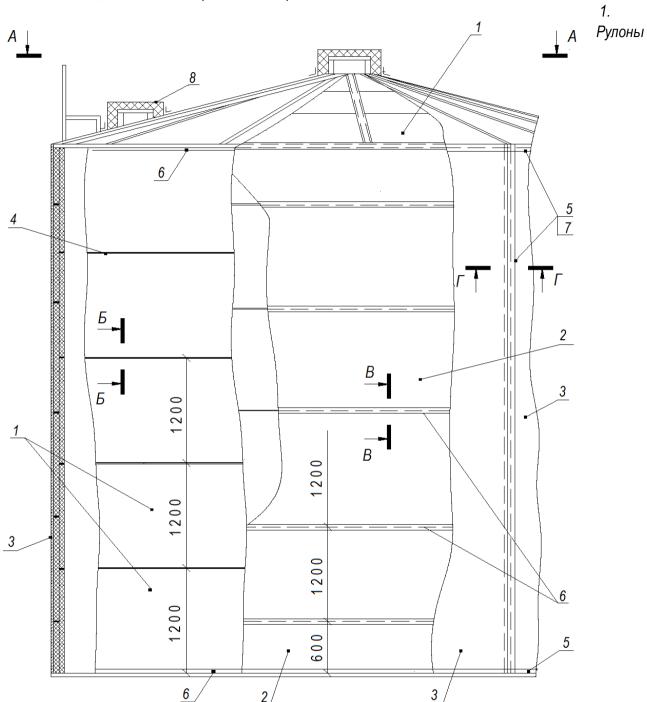
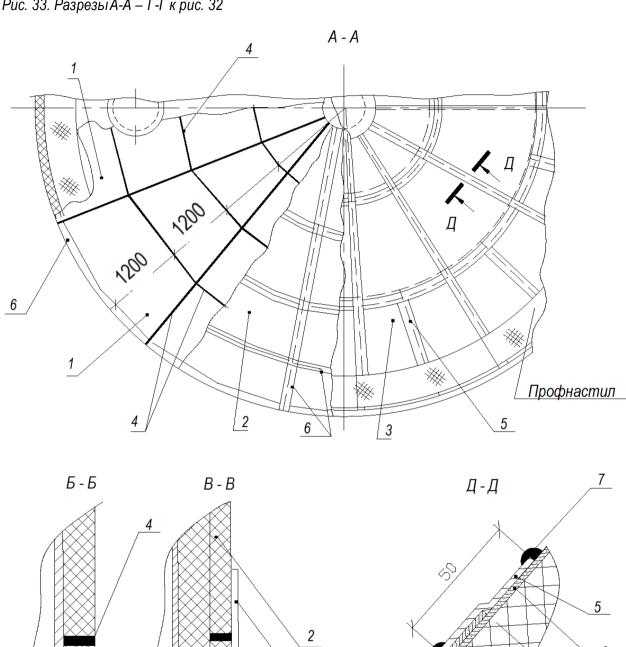



Рис. 32. Тепловая изоляция резервуара холодной воды самоклеящимися рулонами «Тилит» с самоклеящимся гибким покровным материалом «ТИТАНФЛЕКС»

- «Тилит» самоклеящиеся первого слоя
- 2. Рулоны «Тилит» самоклеящиеся второго слоя
- 3. Гибкий покровный материал «ТИТАНФЛЕКС» самоклеящийся
- 4. Клей «Тилит»
- 5. Лента армированная самоклеящаяся «Тилит», лента алюминиевая самоклеящаяся прочная «ЛАС-П»
- 6. Лента самоклеящаяся «Тилит Супер СК», «Тилит Блэк Стар СК»
- 7. Герметик
- 8. Конструкция изоляции люков

3

Puc. 33. *Разрезы А-А – Г-Г к рис.* 32

6

Γ-Γ

40-50

50

5

3

1

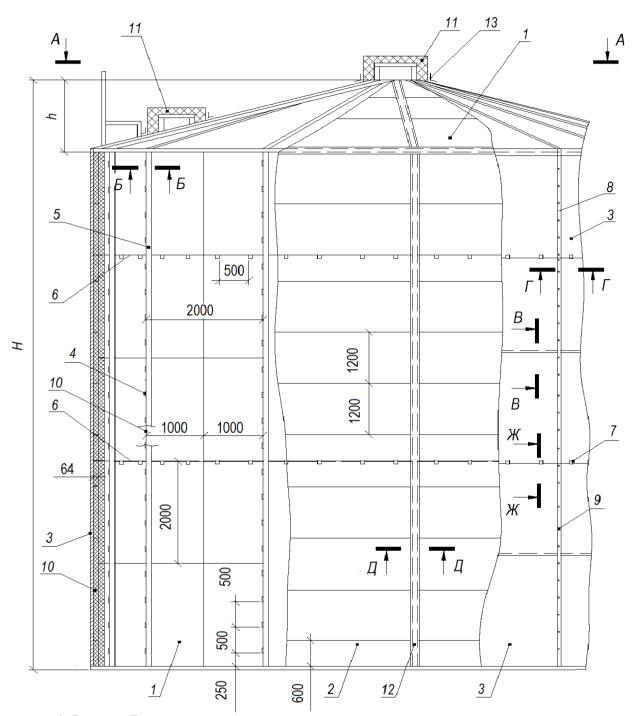
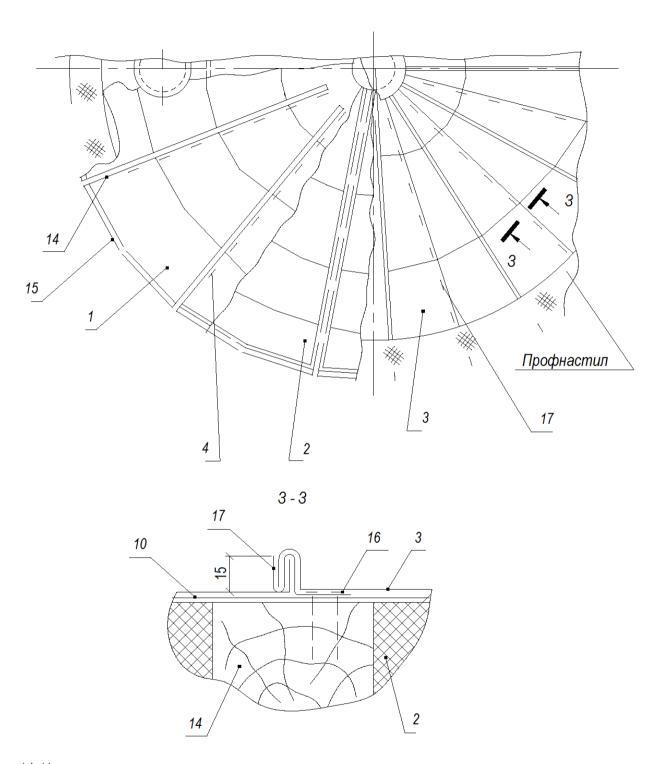
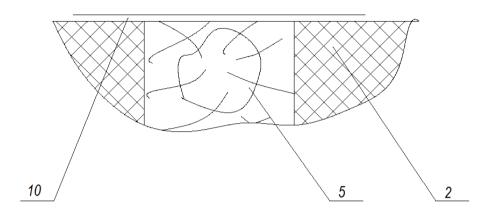
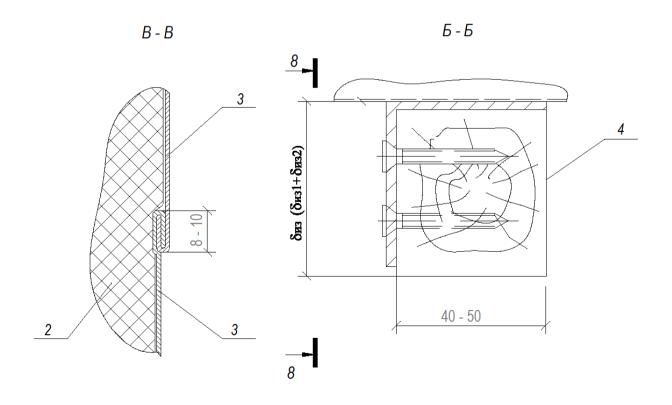



Рис. 34. Конструкция тепловой изоляции резервуаров с теплоизоляционным слоем из рулонов «Тилит» и металлическим покрытием

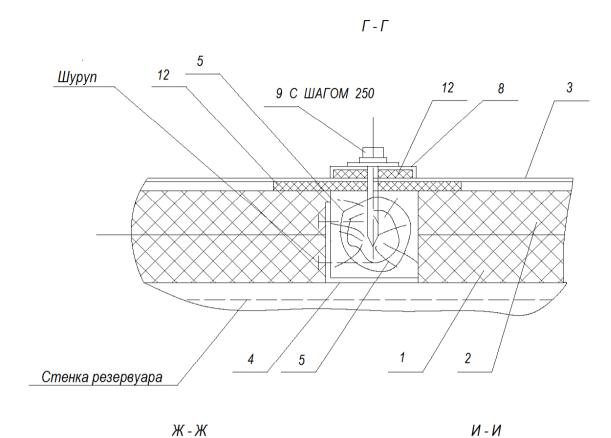
- 1. Рулоны «Тилит» самоклеящиеся первого слоя
- 2. Рулоны «Тилит» самоклеящиеся второго слоя
- 3. Металлическое покрытие 4.Скоба 5. Стойка 6. Диафрагма
- 7. Кляммера 1 8. Накладка-профиль 9. Шуруп 10. Клей «Тилит»
- 11. Конструкция изоляции люков
- 12. Лента армированная самоклеящаяся «Тилит», лента самоклеящаяся «Тилит Супер СК», «Тилит Блэк Стар СК»
- 13. Лента алюминиевая самоклеящаяся прочная «ЛАС-П».

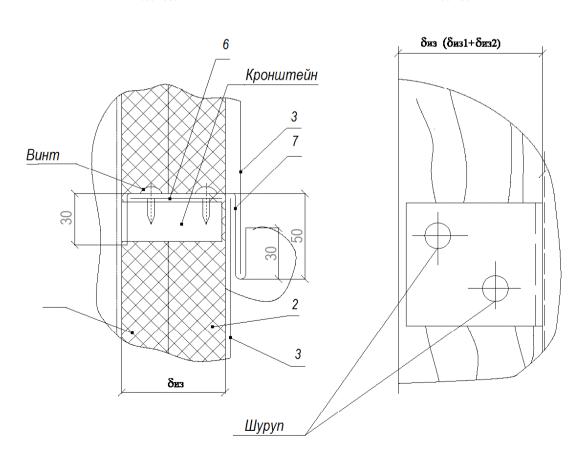

Рис. 35. Разрезы А-А и 3-3 к рис. 34



- 14. Направляющая 15. Опорное кольцо из досок
- 16. Гвоздь
- 17.Кляммера 2

Остальные позиции на рис. 34





Примечание: обозначение элементов конструкции на рис. 34

Рис. 37. РазрезыГ-Г и Ж-Ж к рис. 34 и разрез И-И

Библиография

- [1] Федеральный закон «О техническом регулировании» от 27 декабря 2002 г. № 184-Ф3, статья 17
- [2] ГОСТ Р 1.4-2004 «Стандартизация в Российской Федерации. Стандарты организаций. Общие положения»
- [3] СП 41–103–2000. Проектирование тепловой изоляции оборудования и трубопроводов.
- [4] СТО НОСТРОЙ 2.12.69-2012 Инженерные сети зданий и сооружений внутренние ТЕПЛОИЗОЛЯЦИОННЫЕ РАБОТЫ ДЛЯ ВНУТРЕННИХ ТРУБОПРОВОДОВ ЗДАНИЙ И СООРУЖЕНИЙ Правила, контроль выполнения и требования к результатам работ
- [5] СП 61.13330.2012 актуализированная редакция «СНиП 41-03-2003 Тепловая изоляция оборудования и трубопроводов»

Ключевые слова: теплоизоляционные конструкции, теплоизоляционные изделия «Тилит», «Пенофол», проектирование, монтаж, расчет толщин теплоизоляционного слоя, трубопровод, инженерные системы, программа расчета, LIT THERMO ENGINEER, инженерные коммуникации, трубки, рулоны, покрытие из фольги

СТАНДАРТ ОРГАНИЗАЦИИ

ИЗДЕЛИЯ ТЕПЛОИЗОЛЯЦИОННЫЕ ИЗ ВСПЕНЕННОГО ПОЛИЭТИЛЕНА «ТИЛИТ®», «ПЕНОФОЛ®» В КОНСТРУКЦИЯХ ТЕПЛОВОЙ ИЗОЛЯЦИИ ОБОРУДОВАНИЯ И ТРУБОПРОВОДОВ Руководство по применению, расчет и монтаж

Heat insulating products made of polyethylene foam "TILIT®", "PENOFOL®" in the design of heat insulation of equipment and pipelines

Guidance on the use, design and installation

Руководитель	организации-разработчика		
	<u>юнерное общество</u> од ЛИТ»		
<u>Генеральный д</u>	Junevton		Н.Д. Шилов
должность		чная подпись	инициалы, фамилия
Руководитель			
разработки	Зам. генерального директора		
	по инновациям_		В.М. Цыганков
	должность	личная подпись	инициалы, фамилия
Исполнитель	Ведущий инженер бюро		
	инноваций		Р.П. Мясоедов
	должность	личная подпись	инициалы, фамилия
соисполнит	ЕЛИ		
Руководитель	организации-разработчика		
должность		личная подпись	инициалы, фамилия
Руководитель			
разработки			
	должность	личная подпись	инициалы, фамилия
Исполнитель			
	должность	личная подпись	инициалы. фамилия